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About this document
The Elmer Models Manual is part of the documentation of Elmer finite element software. Elmer Models
Manual is a selection of independent chapters describing different modules a.k.a. solvers of the ElmerSolver.

The modular structure of the manual reflects the modular architecture of the software where new models
may be written without any changes in the main program. Each solver has a separate section for theory and
keywords, and often also some additional information is given, for example on the limitations of the model.
The Elmer Models Manual is best used as a reference manual rather than a concise introduction to the matter.

The present manual corresponds to Elmer software version 6.1. Latest documentations and program
versions of Elmer are available (or links are provided) at http://www.csc.fi/elmer.

Copyright information
The original copyright of this document belongs to CSC – IT Center for Science, Finland, 1995–2009. This
document is licensed under the Creative Commons Attribution-No Derivative Works 3.0 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by-nd/3.0/.

Elmer program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the License, or (at
your option) any later version. Elmer software is distributed in the hope that it will be useful, but without
any warranty. See the GNU General Public License for more details.

Elmer includes a number of libraries licensed also under free licensing schemes compatible with the
GPL license. For their details see the copyright notices in the source files.

All information and specifications given in this document have been carefully prepared by the best ef-
forts of CSC, and are believed to be true and accurate as of time writing. CSC assumes no responsibility or
liability on any errors or inaccuracies in Elmer software or documentation. CSC reserves the right to modify
Elmer software and documentation without notice.
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Model 1

Heat Equation

Module name: included in solver
Module subroutines: HeatSolve
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen, Ville Savolainen
Document edited: July 29th 2002

1.1 Introduction
Heat equation results from the requirement of energy conservation. In addition the Fourier’s law is used to
model the heat conduction. The linearity of the equation may be ruined by temperature dependent thermal
conductivity, or by heat radiation.

1.2 Theory

1.2.1 Governing Equations
The incompressible heat equation is expressed as

ρcp

(
∂T

∂t
+ (~u · ∇)T

)
−∇ · (k∇T ) = τ : ε+ ρh, (1.1)

where ρ is the density, cp the heat capacity at constant pressure, T the temperature, ~u the convection velocity,
k the heat conductivity and h is source of heat. The term τ : ε is the frictional viscous heating, which is
negligible in most cases. For Newtonian fluids, the viscous part of the stress tensor is

τ = 2µε, (1.2)

where ε the linearized strain rate tensor.
Eq.1.1 applies also for solids, setting ~u = 0. For solids, conduction may be anisotropic and the conduc-

tivity a tensor.
For compressible fluids, the heat equation is written as

ρcv

(
∂T

∂t
+ ~u · ∇T

)
−∇ · (k∇T ) = −p∇ · ~u+ τ : ε+ ρh, (1.3)

where cv is the heat capacity at constant volume. The density needs to be calculated from the equation of
state, e.g., perfect gas law. More information is given in the chapter describing the Navier-Stokes equation.

The Elmer heat equation module is capable of simulation heat transfer by conduction, convection, and
diffuse gray radiation. Also a phase change model is included. Couplings to other modules include, convec-
tion by fluid flow, frictional heating (modules providing flow fields), and resistive heating (modules providing
magnetic and/or electric fields).
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1. Heat Equation 10

1.2.2 Phase Change Model
Elmer has an internal fixed grid phase change model. Modelling phase change is done by modifying the
definition of heat capacity according to whether a point in space is in solid or liquid phase or in a ’mushy’
region. The choice of heat capacity within the intervals is explained in detail below.

This type of algorithm is only applicable, when the phase change occurs within finite temperature inter-
val. If the modelled material is such that the phase change occurs within very sharp temperature interval,
this method might not be appropriate.

For the solidification phase change model Elmer uses, we need enthalpy. The enthalpy is defined to be

H(T ) =
∫ T

0

(
ρcp + ρL

∂f

∂λ

)
dλ, (1.4)

where f(T ) is the fraction of liquid material as a function of temperature, and L is the latent heat. The
enthalpy-temperature curve is used to compute an effective heat capacity, whereupon the equations become
identical to the heat equation. There are two ways of computing the effective heat capacity in Elmer:

cp,eff =
∂H

∂T
, (1.5)

and

cp,eff =
(
∇H · ∇H
∇T · ∇T

)1/2

. (1.6)

The former method is used only if the local temperature gradient is very small, while the latter is the preferred
method. In transient simulations a third method is used, given by

cp,eff =
∂H/∂t

∂T/∂t
. (1.7)

1.2.3 Additional Heat Sources
Frictional heating is calculated currently, for both incompressible and compressible fluids, by the heat source

hf = 2µε : ε. (1.8)

In case there are currents in the media the also the the resistive heating may need to be considered. The
Joule heating is then given by

hm =
1
σ
~J · ~J. (1.9)

In the above equations, ~B and ~E are the magnetic and electric fields, respectively. The current density ~J is
defined as

~J = σ( ~E + ~u× ~B). (1.10)

1.2.4 Boundary Conditions
For temperature one can apply boundary conditions and have either temperature or heat flux prescribed.

Dirichlet boundary condition (temperature is prescribed) reads as

T = Tb. (1.11)

The value of Tb can be constant or a function of time, position or other variables.
Heat flux depending on heat transfer coefficient α and external temperature Text may be written as

− k
∂T

∂n
= α(T − Text). (1.12)

Both variables α and Text can be constant or functions of time, position or other variables. If the heat transfer
coefficient α is equal to zero, it means that the heat flux on a boundary is identically zero. The Neumann
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1. Heat Equation 11

boundary condition −k∂T/∂n = 0 is also used in a symmetry axis in 2D, axisymmetric or cylindrical
problems.

Heat flux can consist of idealized radiation whereupon

− k
∂T

∂n
= σε(T 4 − T 4

ext). (1.13)

Above, σ is the Stefan-Boltzmann constant and ε the surface emissivity. The emissivity and the external
temperature can again be constant or functions of time, position, or other variables.

If the surface k is receiving radiation from other surfaces in the system, then the heat flux reads as

− kk
∂Tk
∂nk

= σεk(T 4
k −

1
Akεk

N∑
i=1

GikεiT
4
i Ai), (1.14)

where the subscripts i and k refer to surfaces i and k, and the parameters Ai and Ak to the specific surface
areas. The factors Gik are Gebhardt factors, and N represents the total number of radiating surfaces present
in the system. Emissivities are assumed to be constant on each surface.

The heat equation is nonlinear when radiation is modelled. The nonlinear term in the boundary condition
(1.13) can be linearized as

T 4 − T 4
ext ≈ (T 3 + TextT 2 + T 2

extT + T 3
ext)(T − Text), (1.15)

where T is the temperature from the previous iteration.
One may also give an additional heat flux term as

− k
∂T

∂n
= q. (1.16)

1.3 Keywords
Constants

Stefan Boltzmann Real
The value of the Stefan-Boltzmann constant needed for thermal radiation.

Simulation
The simulation section gives the case control data:

Simulation Type String
Heat equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D, Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta= 0.0, 0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson, and
Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.
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Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords – related
to linear algebra, for example – are common for all the solvers and are explained elsewhere.

Equation String Heat Equation
The name of the equation.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations is small enough

||Ti − Ti−1|| < ε||Ti||,

where ε is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration after a number of Picard iterations have
been performed. If a given convergence tolerance between two iterations is met before the it-
eration count is met, it will switch the iteration type instead. In the heat equation the Picard
iterations means that the radiation term is factorized to linear and third-power terms.

Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, if the relative change of the norm of the
field variable meets a tolerance criterion:

||Ti − Ti−1|| < ε||Ti||,

where ε is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

T
′

i = λTi + (1− λ)Ti−1,

where λ is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances before the whole system is
deemed converged. The tolerance criterion is:

||Ti − Ti−1|| < ε||Ti||,

where ε is the value given with this keyword.

Stabilize Logical
If this flag is set true the solver will use stabilized finite element method when solving the heat
equation with a convection term. If this flag is set to False RFB (Residual Free Bubble)
stabilization is used instead (unless the next flag Bubbles is set to False in a problem with
Cartesian coordinate system). If convection dominates stabilization must be used in order to
successfully solve the equation. The default value is False.

Bubbles Logical
There is also a residual-free-bubbles formulation of the stabilized finite-element method. It is
more accurate and does not include any ad hoc terms. However, it may be computationally more
expensive. The default value is True. If both Stabilize and Bubbles or set to False, no
stabilization is used. Note that in this case, the results might easily be nonsensical.
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1. Heat Equation 13

Smart Heater Control After Tolerance Real
The smart heater control should not be activated before the solution has somewhat settled. By
default the smart heater control is set on when the Newtonian linearization is switched on for the
temperature equation. Sometimes it may be useful to have more stringent condition for turning
on the smart heater control and then this keyword may be used to give the tolerance.

In some cases the geometry or the emissivities of the radiation boundaries change. This may require
the recomputation of the view factors and Gebhardt factors. For that purpose also dynamic computa-
tion of the factors is enabled and it is controlled by the keywords below. The radiation factors are also
automatically computed if no files for the factors are given allthough radiation boundaries exist.

Update View Factors Logical
The recomputation of the view factors is activated by setting the value of this flag to True.
False is the default.

Update Gebhardt Factors Logical
If the emissivities depend on the solution the Gebhardt factors may need to be recomputed. This
is activated by setting giving this flag value True. False is the default.

Minimum View Factor Real
This keyword determines the cut-off value under which the view factors are omitted. Neglecting
small values will not only save memory but also will make the matrix used for solving the
Gabhardt factors less dense. This consequently will enable more efficient sparse matrix strategies
in solving the Gebhardt factors. The value for this parameter might be of the order 10e-8.

Minimum Gebhardt Factor Real
The Gebhardt factors make part of matrix dense. By neglecting the smallest Gebhardt factors
the matrix structure for the heat equation may become significantly sparser and thus the solution
time may drop. The value for this parameter might also be of the order 10e-8.

Implicit Gebhardt Factor Fraction Real
In computing heat transfer problems with radiation in an implicit manner the matrix structure
becomes partially filled. This affects the performance of the linear equation solvers and also
increases the memory requirements. On the other hand explicit treatment of radiation slows
down the convergence significantly. This keyword allows that the largest Gebhardt factors are
treated in an implicit manner whereas the smallest are treated explicitely. The value should lie in
between zero (fully explicit) and one (fully implicit).

Matrix Topology Fixed Logical
If the Gebhardt factors change the matrix structure of the heat equation may also have to be
changed unless this flag is set to False. Then all factors that do not combine with the matrix
structure are omitted.

View Factors Geometry Tolerance Real
The view factors take a lot of time to compute. Therefore during the iteration a test is performed
to check whether the geometry has changed. If the relative maximum change in the coordinate
values is less than the value given by this parameter the view factors are not recomputed and the
old values are used.

View Factors Fixed After Iterations Integer
Sometimes the iteration changes the geometry of the radiation boundaries as an unwanted side-
effect. Then the geometry on the radiation boundary may be set fixed after some iterations. In
practice this is done by adding suitable Dirichlet conditions in the boundary conditions.

Gebhardt Factors Fixed After Iterations Integer
Sometimes the emissivity depends on temperature but recomputing it every time may be costly.
By this keyword the recomputation may be limited to the given number of visits to the heat
equation solver.

View Factors Fixed Tolerance Real
This keywords defines the coupled system tolerance for the heat equation after which the recom-
putation of view factors is omitted. Typically this should be defined by a geometry tolerance but
if the temperature solver follows the changes in geometry this may be a good control as well.
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Gebhardt Factors Fixed Tolerance Real
This keywords defines the coupled system tolerance for the heat equation after which the recom-
putation of Gebhardt factors is omitted. The temperature dependence of emissivity is typically
not so strong that small temperature changes would result to a need to recompute the Gebhardt
factors as well.

Gebhardt Factors Solver Full Logical
If the view factor matrix is relatively sparse it will make sense to use a sparse matrix equation
for solving the Gebhardt factors. This flag may be used if a full matrix should be desired.

Gebhardt Factors Solver Iterative Logical
If the Gebhardt factors are solved from a sparse matrix equation also the type of solver may
be selected. The default is direct umfpack solver. Sometimes the memory usage may be a
problem or the direct strategy simply not efficient enough. Then an iterative cgs solver may be
used instead.

Viewfactor Divide Integer
For axisymmetric view factor computation gives the number of divisions for each element. The
default is 1.

Viewfactor Combine Elements Logical
There may be a significant amount of saved time if in the axisymmetric view factor computation
the elements that are aligned and share a common node are united. The shadowing loop will then
only be performed over these macroelements.

Equation eq id
The equation section is used to define a set of equations for a body or set of bodies.

Heat Equation String
If set to True, solve the heat equation.

Convection String
The type of convection to be used in the heat equation, one of: None, Computed, Constant.

Phase Change Model String
One of: None, Spatial 1, Spatial 2 and Temporal. Note that when solidification
is modelled, the enthalpy-temperature- and viscosity-temperature-curves must be defined in the
material section.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keywords are recognized by the base solver:

Heat Source Real
An additional heat source h for the heat equation may be given with this keyword.

Friction Heat Logical
Currently redundant key word, the frictional heating hf is automatically added.

Joule Heat Logical
If set True, triggers use of the electromagnetic heating. This keywords accouns for the heating
of many different solvers; electrostatics, magnetostatics, and induction equation.

Smart Heater Control Logical
Sometimes the predescribed heat source does not lead to the desired temperature. Often the
temperature is controlled by a feedback and therefore a similar heater control in the simulation
may give more realistic results. This flag makes sets the smart heater control on for the given
body force.

Integral Heater Control Real
This keyword activates a normaliazation of the Heat Source so that the integral heating power
is the desired objective.
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Initial Condition ic id
The initial condition section may be used to set initial values for temperature.

Temperature Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be effective when heat equation is solved.

Density Real
The value of density is given with this keyword. The value may be constant, or variable. For the
compressible flow, the density is computed internally, and this keyword has no effect.

Enthalpy Real
Note that, when using the solidification modelling, an enthalpy-temperature curve must be given.
The enthalpy is derived with respect to temperature to get the value of the effective heat capacity.

Viscosity Real
Viscosity is needed if viscous heating is taken into account. When using the solidification mod-
elling, a viscosity-temperature curve must be given. The viscosity must be set to high enough
value in the temperature range for solid material to effectively set the velocity to zero.

Heat Capacity Real
The value of heat capacity in constant pressure cp is given with this keyword. The value may
be constant, or variable. For the phase change model, this value is modified according to rules
given in the theory section.

Heat Conductivity Real
The value of heat conductivity k is given with this keyword. The value may be a constant or
variable.

Convection Velocity i Real
Convection velocity i= 1, 2, 3 for the constant convection model.

Compressiblity Model Real
This setting may be used to set the compressibilty model for the flow simulations. Choices are
Incompressible and Perfect Gas. If set to the latter there may be mechanical work
performed by the heating. Then also the settings Reference Pressure and Specific
Heat Ratio must also be given.

Reference Pressure Real
With this keyword a reference level of pressure may be given.

Specific Heat Ratio Real
The ratio of specific heats (in constant pressure versus in constant volume) may be given with this
keyword. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

Emissivity Real
Emissivity of the radiating surface, required for radiation model is present. If the emissivity is
not found in the radiating boundary only then will it be looked at the material properties of the
parent elements. Often locating the emissivity here makes the case definition more simple.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types. In
heat equation we may set the temperature directly by Dirichlet boundary conditions or use different
flux conditions for the temperature. The natural boundary condition of heat equation is zero flux
condition.

Temperature Real

Heat Flux BC Logical
Must be set to True, if heat flux boundary condition is present.
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Heat Flux Real
A user defined heat flux term.

Heat Transfer Coefficient Real
Defines the parameter α in the heat flux boundary condition of the type

−k∂T
∂n

= α(T − Text).

External Temperature Real
Defines the variable for ambient temperature Text in the previous equation.

Radiation String
The type of radiation model for this boundary, one of: None, Idealized, Diffuse Gray.
Note that, when using the diffuse gray radiation model, the file containing the Gebhardt factors
must be given in the simulation section.

Radiation Boundary Integer
If there are many closures with radiation boundary conditions that do not see each other the
view factors may be computed separately. This keyword is used to group the boundaries to
independent sets. The default is one.

Radiation Boundary Open Logical
The closures may be partially open. Then no normalization of the view factors is enforced. The
missing part of the radiation angle is assumed to be ideal radiation. Therefore if this option is
enforced also the parameter External Temperature must be given.

Emissivity Real
Emissivity of the radiating surface, required for radiation model is present. If the emissivity is
not found here it will be searched at the parant elements.

Radiation Target Body Integer
This flag may be used to set the direction of the outward pointing normal. This is used when
computing viewfactors. A body identification number must be given. The default is that the
normal points to less dense material or outward on outer boundaries.

Smart Heater BoundaryLogical If the smart heater is activated the point for monitoring the tempera-
ture is the point with maximum x-coordinate on the boundary where this keyword is set True.
Alternatively the logical variable Phase Change is looked for.

Smart Heater TemperatureReal The desired temperature for the smart heater system is set by this
keyword. Alternatively the real variable Melting Point may be used.
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Navier-Stokes Equation

Module name: included in solver
Module subroutines: FlowSolve
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen, Peter Råback
Document created: 2002
Document edited: 30.9.2010

2.1 Introduction
In solid and liquid materials heat transfer and viscous fluid flow are governed by heat and Navier-Stokes
equations, which can be derived from the basic principles of conservation of mass, momentum and energy.
Fluid can be either Newtonian or non-Newtonian. In the latter case the consideration in Elmer is limited to
purely viscous behaviour with the power-law model.

In the following we present the governing equations of fluid flow, heat transfer and stresses in elastic
material applied in Elmer. Also the most usual boundary conditions applied in computations are described.

2.2 Theory
The momentum and continuity equations can be written as

ρ

(
∂~u

∂t
+ (~u · ∇)~u

)
−∇ · σ = ρ~f, (2.1)

and (
∂ρ

∂t
+ (~u · ∇)ρ

)
+ ρ(∇ · ~u) = 0, (2.2)

where σ is the stress tensor. For Newtonian fluids

σ = 2µε− 2
3
µ(∇ · ~u)I − pI, (2.3)

where µ is the viscosity, p is the pressure, I the unit tensor and ε the linearized strain rate tensor, i.e.

εij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.4)

The density of an ideal gas depends on the pressure and temperature through the equation of state

ρ =
p

RT
, (2.5)
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where R is the gas constant:

R =
γ − 1
γ

cp. (2.6)

The specific heat ratio γ is defined as

γ =
cp
cv
, (2.7)

where cp and cv are the heat capacities in constant pressure and volume, respectively. The value of γ depends
solely on the internal molecular properties of the gas.

An imcompressibe flow is characterized by the condition ρ=constant, from which it follows that

∇ · ~u = 0. (2.8)

Enforcing the constraint (2.8) in (2.30), (2.2) and (2.3), the equations reduce to the Navier-Stokes equations

ρ

(
∂~u

∂t
+ (~u · ∇)~u

)
−∇ · (2µε) +∇p = ρ~f, (2.9)

∇ · ~u = 0. (2.10)

Compressible flows are modelled by the equations (2.30)-(2.7). Then, it is possible to replace the state
equation (2.5) by

ρ =
1
c2
p, (2.11)

where c = c(p, T, . . . ) is the speed of sound. The equation (2.11) can be used with liquid materials as well.
Most commonly the term ρ~f represents a force due to gravity, in which case the vector ~f is the gravita-

tional acceleration. It can also represent, for instance, the Lorentz force when magnetohydrodynamic effects
are present.

For isothermal flows the equations (2.9) and (2.10) desrcibe the system in full. For thermal flows also
the heat equation needs to be solved.

For thermal incompressible fluid flows we assume that the Boussinesq approximation is valid. This
means that the density of the fluid is constant except in the body force term where the density depends
linearly on temperature through the equation

ρ = ρ0(1− β(T − T0)), (2.12)

where β is the volume expansion coefficient and the subscript 0 refers to a reference state. Assuming that
the gravitational acceleration ~g is the only external force, then the force ρ0~g(1−β(T −T0)) is caused in the
fluid by temperature variations. This phenomenon is called Grashof convection or natural convection.

One can choose between transient and steady state analysis. In transient analysis one has to set, besides
boundary conditions, also initial values for the unknown variables.

2.2.1 Boundary Conditions
For the Navier-Stokes equation one can apply boundary conditions for velocity components or the tangential
or normal stresses may be defined.

In 2D or axisymmetric cases the Dirichlet boundary condition for velocity component ui is simply

ui = ubi . (2.13)

A value ubi can be constant or a function of time, position or other variables. In cylindrical cases the Dirichlet
boundary condition for angular velocity uθ is

uθ = ω, (2.14)

where ω is the rotation rate.
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In axisymmetric geometries one has to set ur = 0 and ∂uz/∂r = 0 on the symmetry axis.
If there is no flow across the surface, then

~u · ~n = 0 (2.15)

where ~n is the outward unit normal to the boundary.
Surface stresses can be divided into normal and tangential stresses. Normal stress is usually written in

the form
σn =

γ

R
− pa (2.16)

where γ is the surface tension coefficient, R the mean curvature and pa the atmospheric (or external) pres-
sure. Tangential stress has the form

~στ = ∇sγ, (2.17)

where ∇s is the surface gradient operator.
The coefficient γ is a thermophysical property depending on the temperature. Temperature differences

on the surface influence the transport of momentum and heat near the surface. This phenomenon is called
Marangoni convection or thermocapillary convection. The temperature dependence of the surface tension
coefficient can be approximated by a linear relation:

γ = γ0(1− ϑ(T − T0)), (2.18)

where ϑ is the temperature coefficient of the surface tension and the subscript 0 refers to a reference state.
If a Boussinesq hypothesis is made, i.e., the surface tension coefficient is constant except in (2.17) due to
(2.18), the boundary condition for tangential stress becomes

~στ = −ϑγ0∇sT. (2.19)

In equation (2.16) it holds then that γ = γ0. The linear temperature dependence of the surface tension
coefficient is naturally only one way to present the dependence. In fact, the coefficient γ can be any user
defined function in Elmer. One may also give the force vector on a boundary directly as in

σ · ~n = ~g. (2.20)

2.2.2 Linearization
As is well known, the convective transport term of the Navier-Stokes equations and the heat equation is a
source of both physical and numerical instability. The numerical instability must be compensated somehow
in order to solve the equations on a computer. For this reason the so called stabilized finite element method
([2],[1]) is used in Elmer to discretize these equations.

The convection term of the Navier-Stokes equations is nonlinear and has to be linearized for computer
solution. There are two linearizations of the convection term in Elmer:

(~u · ∇)~u ≈ (~U · ∇)~U (2.21)

and
(~u · ∇)~u ≈ (~u · ∇)~U + (~U · ∇)~u− (~U · ∇)~U , (2.22)

where ~U is the velocity vector from the previous iteration. The first of the methods is called Picard iteration
or the method of the fixed point, while the latter is called Newton iteration. The convergence rate of the
Picard iteration is of first order, and the convergence might at times be very slow. The convergence rate of
the Newton method is of second order, but to succesfully use this method, a good initial guess for velocity
and pressure fields is required. The solution to this problem is to first take a couple of Picard iterations, and
switch to Newton iteration after the convergence has begun.
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2.2.3 Non-newtonian Material Models
There are several non-newtonian material models. All are functions of the strainrate γ̇. The simple power
law model has a problematic behavior at low shear rates. The more complicated models provide a smooth
transition from low to high shearrates.

Power law

η =

{
η0γ̇

n−1 if γ̇ > γ̇0,

η0γ̇
n−1
0 if γ̇ ≤ γ̇0.

(2.23)

where η∞ is constant, γ̇0 is the critical shear rate, and n is the viscosity exponent.
Carreau-Yasuda

η = η∞ + ∆η (1 + (cγ̇)y)
n−1

y , (2.24)

where η∞ is the high shearrate viscosity γ̇ → ∞ provided that n < 1. For shearrates approaching zero the
viscosity is η0 = η∞ + ∆η. ∆η is thus the maximum viscosity difference between low and high shearrate.
This model recovers the plain Carreau model when the Yasuda exponent y = 2.

The model can be made temperature dependent. One choice is to multiply ∆η and c by factor exp(d(1/T−
1/T0)), where d and T0 are model parameters.

Cross
η = η∞ +

∆η
1 + cγ̇n

, (2.25)

where again η∞ is the high shearrate viscosity.
Powell-Eyring

η = η∞ + ∆η
asinh(cγ̇)

cγ̇
. (2.26)

2.2.4 Flow in Porous Media
A simple porous media model is provided in the Navier-Stokes solver. It utilizes the Darcy’s law that states
that the flow resistance is proportinal to the velocity and thus the modified momentum equation reads

ρ

(
∂~u

∂t
+ (~u · ∇)~u

)
−∇ · σ + r~u = ρ~f, (2.27)

where r is the porous resistivity which may also be an orthotropic tensor. Usually the given parameter is
permeability which is the inverse of the resistivity as defined here. No other features of the porous media
flow is taken into consideration. Note that for large value of r only the bubble stabilization is found to work.

2.2.5 Rotating coordinates

In rotating coordinate system around origin one may define the angular velocity vector, ~Ω. The rotation
introduces additional forces that may be evalued from the following

d~uinertial
dt

=
d~urotating

dt
+ 2~Ω× ~urotating + ~Ω× (~Ω× ~x). (2.28)

In numerical implementationthe following Lagrange’s formula is used

~Ω× (~Ω× ~x) = (~Ω · ~x)~Ω− (~Ω · ~Ω)~x. (2.29)

which results to the following form of the Navier-Stokes equation in rotating coordinates

ρ

(
∂~u

∂t
+ (~u · ∇)~u

)
−∇ · σ + 2ρ~Ω× ~u = ρ(~Ω · ~Ω)~x− ρ(~Ω · ~x)~Ω + ρ~f, (2.30)

It should be noted that now also the boundary conditions need to be given in the rotational coordinate system.
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2.2.6 Coupling to Electric Fields
In electrokinetics the fluid may have charges that are coupled to external electric fields. This results to an
external force that is of the form

~fe = −ρe∇φ, (2.31)

where ρe is the charge density and φ is the external electric field. The charge density may also be a variable.
More specifically this force may be used to couple the Navier-Stokes equation to the Poisson-Boltzmann
equation describing the charge distribution in electric doubly layers. Also other types of forces that are
proportional to the gradient of the field may be considered.

2.2.7 Coupling to Magnetic Fields
If the fluid has free charges it may couple with an magnetic field. The magnetic field induced force term for
the flow momentum equations is defined as

~fm = ~J × ~B, (2.32)

Here ~B and ~E are the magnetic and electric fields, respectively. The current density ~J is defined as

~J = σ( ~E + ~u× ~B). (2.33)

2.3 Keywords
Constants

Gravity Size 4 Real [x y z abs]
The above statement gives a real vector whose length is four. In this case the first three compo-
nents give the direction vector of the gravity and the fourth component gives its intensity.

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Navier-Stokes]
The name of the equation.

Flow Model String [Full][No convection][Stokes]
Flow model to be used. The default is to include both convection and time derivative terms in the
model. The "No convection" model switches off the convection terms, and the "Stokes" model
both the convection terms and the (explicit) time derivative terms.

Nonlinear System Convergence Tolerance Real
this keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations is small enough

||ui − ui−1|| < ε||ui||,

where ε is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maxmimum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Newton After Iterations Integer
Change the nonlinear solver type to Newton iteration after a number of Picard iterations have
been performed. If a given convergence tolerance between two iterations is met before the itera-
tion count is met, it will switch the iteration type instead.
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Nonlinear System Newton After Tolerance Real
Change the nonlinear solver type to Newton iteration, if the relative change of the norm of the
field variable meets a tolerance criterion:

||ui − ui−1|| < ε||ui||,

where ε is the value given with this keyword.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a factor
below unity is sometimes required to achive convergence of the nonlinear system. A factor above
unity might speed up the convergence. Relaxed variable is defined as follows:

u
′

i = λui + (1− λ)ui−1,

where λ is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances before the whole system is
deemed converged. The tolerance criterion is:

||ui − ui−1|| < ε||ui||,

where ε is the value given with this keyword.

Stabilize Logical
If this flag is set true the solver will use stabilized finite element method when solving the Navier-
Stokes equations. Usually stabilization of the equations must be done in order to succesfully
solve the equations. If solving for the compressible Navier-Stokes equations, a bubble function
formulation is used instead of the stabilized formulation regardless of the setting of this keyword.
Also for the incompressible Navier-Stokes equations, the bubbles may be selected by setting this
flag to False.

Div Discretization Logical
In the case of incompressible flow using the this form of discretization of the equation may lead
to more stable discretization when the Reynolds number increases.

Gradp Discretization Logical
Whit this form of discretization pressure Dirichlet boundary conditions can be used (and pressure
level must be fixed by such a condition). Also the mass flux is available as a natural boundary
condition.

Equation eq id
The equation section is used to define a set of equations for a body or set of bodies:

Navier-Stokes Logical
if set to True, solve the Navier-Stokes equations.

Magnetic Induction Logical
If set to True, solve the magnetic induction equation along with the Navier-Stokes equations.

Convection String [None, Computed, Constant]
The convection type to be used in the heat equation, one of: None, Computed, Constant.
The second choice is used for thermal flows.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Boussinesq Logical
If set true, sets the Boussinesq model on.
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Flow BodyForce i Real
May be used to give additional body force for the flow momentum equations, i=1,2,3.

Lorentz Force Logical
If set true, triggers the magnetic field force for the flow mementum equations.

Potential Force Logical
If this is set true the force used for the electricstatic coupling is activated.

Potential Field Real
The field to which gradient the external force is proportional to. For example the electrostatic
field.

Potential Coefficient Real
The coefficient that multiplies the gradient term. For example, the charge density.

Angular Velocity Real
The angular velocity ~Ω used for rotating coordinate systems. The size is always expected to be
three.

Initial Condition ic id
The initial codition section may be used to set initial values for the field variables. The following
variables are active:

Pressure Real

Velocity i Real
For each velocity component i= 1, 2, 3.

Kinetic Energy Real
For the k-ε turbulence model.

Kinetic Energy Dissipation Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier-Stokes equation.

Density Real The value of density is given with this keyword. The value may be constant, or
variable. For the of compressible flow, the density is computed internally, and this keyword has
no effect.

Viscosity Real
The relationship between stress and strain velocity. When using the solidification modelling, a
viscosity-temperature curve must be given. The viscosity must be set to high enough value in
the temperature range for solid material to effectively set the velocity to zero.

Reference Temperature Real
This is the reference temperature for the Boussinesq model of temperature dependence of density.

Heat Expansion Coefficient real
For the Boussinesq model the heat expansion coefficient must be given with this keyword. De-
fault is 0.0.

Applied Magnetic Field i Real
An applied magnetic field may be given with these keywords with i=1,2,3.

Compressiblity Model String
This setting may be used to set the compressibilty model for the flow simulations. Currently the
setting may be set to either Incompressible, Perfect Gas and ArtificialCompressible.
If perfect gas model is chosen the settings Reference Pressure and Specific Heat
Ratio must also be given. The artificial compressibility model may be used to boost conver-
gence in fluid-structure-interaction cases. The default value of this setting is Incompressible.
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Reference Pressure Real
with this keyword a reference level of pressure may be given. This setting applies only if the
Compressiblity Model is set to the value Perfect Gas.

Specific Heat Ratio Real
The ratio of specfic heats (in constant pressure versus in constant volume) may be given with this
keyword. This setting applies only if the Compressiblity Model is set to value Perfect
Gas. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

For the k-ε turbulence model the model parameters may also be given in the material section using the
following keywords

KE SigmaK Real [1.0]

KE SigmaE Real [1.3]

KE C1 Real [1.44]

KE C2 Real [1.92]

KE Cmu Real [0.09]

Non-newtonian material laws are also defined in material section. For the power law the constant
coefficient is given by the keyword Viscosity.

Viscosity Model String
The choices are power law, carreau, cross, powell eyring and thermal carreau.
If none is given the fluid is treated as newtonian.

Viscosity Exponent Real
Parameter n in the models power law, Carreau, Cross

Viscosity Difference Real
Difference ∆η between high and low shearrate viscosities. Ablicable to Carreau, Cross and
Powell-Eyring models.

Viscosity Transition Real
Parameter c in the Carreau, Cross and Powell-Eyring models.

Critical Shear Rate Real [0.0]
Optional parameter γ̇0 in power law viscosity model.

Yasuda Exponent Real
Optional parameter y in Carreau model. The default is 2. If activated the model is the more
generic Yasuda-Carreau model.

Viscosity Temp Ref Real
Paremeter T0 in the thermal Carreau-Yasuda model.

Viscosity Temp Exp Real
Paremeter d in the thermal Carreau-Yasuda model.

Porosity is defined by the material properties

Porous Media Logical
If this keyword is set True then the porous model will be active in the material.

Porous Resistance Real
This keyword may give a constant resistance or also a orthotropic resistance where the resistance
of each velocity component is given separately.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier-
Stokes equation are
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Velocity i Real
Dirichlet boundary condition for each velocity component i= 1, 2, 3.

Pressure Real
Absolute pressure.

Normal-Tangential Velocity Real
The Dirichlet conditions for the vector variables may be given in normal-tangential coordinate
system instead of the coordinate axis directed system using the keywords

Flow Force BC Logical
Set to true, if there is a force boundary condition for the Navier-Stokes equations.

Surface Tension Expansion Coefficient Real
Triggers a tangetial stress boundary condition to be used. If the keyword Surface Tension
Expansion Coefficient is given, a linear dependence of the surface tension coefficient
on the temperature is assumed. Note that this boundary condition is the tangential derivative of
the surface tension coefficient

Surface Tension Coefficient Real
Triggers the same physical model as the previous one except no linearity is assumed. The value
is assumed to hold the dependence explicitely.

External Pressure Real
A pressure boundary condition directed normal to the surface.

Pressure i Real
A pressure force in the given direction i= 1, 2, 3.

Free Surface Logical
Specifies a free surface.

Free Moving Logical
Specifies whether the regeneration of mesh is free to move the nodes of a given boundary when
remeshing after moving the free surface nodal points. The default is that the boundary nodes are
fixed.

The k-ε turbulence model also has its own set of boundary condition keywords (in addition to the
Dirichlet settings):

Wall Law Logical
The flag activates the (Reichardts) law of the wall for the boundary specified. the default is 9.0.

Boundary Layer Thickness Real
The distance from the boundary node of the meshed domain to the physical wall.
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3.1 Introduction
Advection-diffusion equation (sometimes called diffusion-convection equation) describes the transport of a
scalar quantity or a chemical species by convection and diffusion. The difference in the nomenclature usually
indicates that an advected quantity does not have an effect on the velocity field of the total fluid flow but
a convected quantity has. Advection-diffusion equation is derived from the principle of mass conservation
of each species in the fluid mixture. Advection-diffusion equation may have sources or sinks, and several
advection-diffusion equations may be coupled together via chemical reactions.

Fick’s law is used to model the diffusive flux. Diffusion may be anisotropic, which may be physically
reasonable at least in solids. If the velocity field is identically zero, the advection-diffusion equation reduces
to the diffusion equation, which is applicable in solids.

Heat equation is a special case of the advection-diffusion (or diffusion-convection) equation, and it is
described elsewhere in this manual.

3.2 Theory

3.2.1 Governing Equations
The advection-diffusion equation may, in general, be expressed in terms of relative or absolute mass or
molar concentrations. In Elmer, when the transported quantity is carried by an incompressible fluid (or it is
diffused in a solid), relative mass concentration ci = Ci/ρ for the species i is used (Ci is the absolute mass
concentration in units kg/m3, and ρ the total density of the mixture). We have used the approximation valid
for dilute multispecies flows, i.e., 0 ≤ ci � 1. The advection-diffusion equation is now written as

ρ

(
∂ci
∂t

+ (~v · ∇)ci

)
= ρ∇ · (Di∇ci) + Si, (3.1)

where ~v is the advection velocity, Di the diffusion coefficient and Si is a source, sink or a reaction term. The
diffusion coefficient may be a tensor.

For a compressible fluid, the concentration should be expressed in absolute mass units, and the advection-
diffusion equation reads

∂Ci
∂t

+ (∇ · ~v)Ci + (~v · ∇)Ci = ∇ · (Di∇Ci) + Si. (3.2)
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For a situation, where the quantity is transported through a phase change boundary, it is convenient to
scale the absolute mass formulation by the respective solubilities of the different phases. Such a case is for
example the surface of a liquid, where the transported quantity is evaporated into a gaseous material. The
scaled concentration variable satisfies the equilibrium boundary condition on the phase change boundary
automatically, and thus the advection-diffusion equation can be solved for both materials simultaneously.
The scaling is following

xi =
Ci

Ci,max
, (3.3)

where xi is the concentration of species i relative to its maximum solubility in the current material in absolute
mass units. The maximum solubility has to be a constant (temperature independent) for the absolute mass
formulation of the advection-diffusion equation to remain unchanged.

It is also possible to include temperature dependent diffusion (Soret diffusion). This introduces an addi-
tional term on the right had side of the equation:

∇ · (ρDi,T∇T ), (3.4)

where Di,T is the thermal diffusion coefficient of species i. The coefficient Di,T has to be given in the units
m2/Ks regardless of the units used for concentration.

The velocity of the advecting fluid, ~v, is typically calculated by the Navier-Stokes equation and read in
from a restart file. All quantities can also be functions of, e.g., temperature that is given or solved by the
heat equation. Several advection-diffusion equations for different species i may be coupled and solved for
the same velocity field.

Given volume species sources Si can be prescribed. They are given in absolute mass units, i.e., kg/m3s.
If the equation is scaled to maximum solubility, the source term can be given in absolute mass units, or in
scaled units, Si,sc = Si/Ci,max, which is the default.

3.2.2 Boundary Conditions
For each species one can apply either a prescribed concentration or a mass flux as boundary conditions.

Dirichlet boundary condition reads as
ci = ci,b, (3.5)

or
Ci = Ci,b, (3.6)

depending on the units. If the concentration is scaled to maximum solubility, the Dirichlet boundary condi-
tions have to be given also in scaled values, xi = Ci,b/Ci,max. In all variations, the boundary value can be
constant or a function of time, position or other variables.

One may specify a mass flux ~i perpendicular to the boundary by

~i · ~n = −Di
∂Ci
∂n

= g. (3.7)

In relative mass units, this may be written as

~i · ~n = −ρDi
∂ci
∂n

= g. (3.8)

Thus the units in the flux boundary condition are always kg/m2s except when the equation is scaled to
maximum solubility. In that case the default is to give flux condition in scaled units, gsc = g/Ci,max,
although the physical units are also possible.

The mass flux may also be specified by a mass transfer coefficient β and an external concentration Cext

−Di
∂Ci
∂n

= β(Ci − Ci,ext). (3.9)

On the boundaries where no boundary condition is specified, the boundary condition g = 0 is applied.
This zero flux condition is also used at a symmetry axis in 2D, axisymmetric or cylindrical problems.

CSC – IT Center for Science



3. Advection-Diffusion Equation 28

The equilibrium boundary condition on phase change boundaries under certain conditions is that the
relative amounts of the transported quantity are equal on both sides of the boundary,

C
(1)
i

C
(1)
i,max

=
C

(2)
i

C
(2)
i,max

, (3.10)

where the superscripts (1) and (2) refer to different sides of the boundary. This boundary condition is
automatically satisfied if the equation is scaled with the maximum solubilities C(j)

i,max.
However, the scaling causes a discontinuity into the mass flux of the species through the phase change

surface. The solver compensates this effect as long as such a boundary is flagged in the command file by the
user.

3.3 Keywords
Simulation

The simulation section gives the case control data:

Simulation Type String
Advection-diffusion equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D, Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta=0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson,
and Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords – related
to linear algebra, for example – are common for all the solvers and are explained elsewhere.

Equation String [Advection Diffusion Equation Varname]
The name of the equation, e.g., Advection Diffusion Equation Oxygen.

Variable String Varname
The name of the variable, e.g., Oxygen.

Procedure File "AdvectionDiffusion" "AdvectionDiffusionSolver"
The name of the file and subroutine.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations k is small enough

||uk − uk−1|| < ε||uk||,

where ε is the value given with this keyword, and u is either ci or Ci.
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Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a
factor below unity is sometimes required to achieve convergence of the nonlinear system. A
factor above unity might speed up the convergence. Relaxed variable is defined as follows:

u
′

k = λuk + (1− λ)uk−1,

where λ is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable u before
the whole system is deemed converged. The tolerance criterion is:

||ui − ui−1|| < ε||Ti||,

where ε is the value given with this keyword.

Stabilize Logical
If this flag is set true the solver will use stabilized finite element method when solving the
advection-diffusion equation with a convection term. If this flag is set to False, RFB (Residual
Free Bubble) stabilization is used instead (unless the next flag Bubbles is set to False in a
problem with Cartesian coordinate system). If convection dominates, some form of stabilization
must be used in order to succesfully solve the equation. The default value is False.

Bubbles Logical
There is also a residual-free-bubbles formulation of the stabilized finite-element method. It is
more accurate and does not include any ad hoc terms. However, it may be computationally more
expensive. The default value is True. If both Stabilize and Bubbles or set to False, no
stabilization is used. This choice may be enforced in a problem with Cartesian coordinates, but
the results might be nonsensical. Both Stabilize and Bubbles should not be set to True
simultaneously.

Equation eq id
The equation section is used to define a set of equations for a body or set of bodies.

Advection Diffusion Equation Varname Logical
If set to True, solve the advection-diffusion equation.

Convection String
The type of convection to be used in the advection-diffusion equation, one of: None, Computed,
Constant.

Concentration Units String
If set to Absolute Mass, absolute mass units are used for concentration. Recommended for
a compressible flow. Also possible to select Mass To Max Solubility which causes the
absolute mass formulation of the equation to be scaled by the maximum solubilities of each
material.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keyword is recognized by the solver:

Varname Diffusion Source Real
An additional volume source for the advection-diffusion equation may be given with this key-
word. It may depend on coordinates, temperature and other variables, such as concentration of
other chemical species, and thus describe a source, a sink or a reaction term. Given in absolute
mass units or, in case of scaling, in the scaled units.
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Physical Units Logical True
With this keyword, the source term can be given in absolute mass units regardless of scaling.

Initial Condition ic id
The initial condition section may be used to set initial values for the concentration ci, Ci or xi.

Varname Real

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be effective when advection-diffusion equation is solved.

Convection Velocity i Real
Convection velocity i= 1, 2, 3 for the constant convection model.

Density Real
The value of density of the transporting fluid is given with this keyword. The value may be
constant, or variable. For compressible flow, the density of the transporting fluid is computed
internally, and this keyword has no effect.

Compressibility Model String
This setting may be used to set the compressibility model for the flow simulations. Choices are
Incompressible and Perfect Gas. If set to the latter, the density is calculated from the
ideal gas law. Then also the settings Reference Pressure, Specific Heat Ratio
and Heat Capacity must be given.

Reference Pressure Real
With this keyword a reference level of pressure may be given.

Specific Heat Ratio Real
The ratio of specific heats (in constant pressure versus in constant volume) may be given with this
keyword. The default value of this setting is 5/3, which is the appropriate value for monoatomic
ideal gas.

Heat Capacity Real
For the compressible flow, specific heat in constant volume.

Varname Diffusivity Real
The diffusivity D given by, e.g., Oxygen Diffusivity. Can be a constant or variable. For
an anisotropic case, may also be a tensor Dij .

Varname Soret Diffusivity Real
The thermal diffusivity coefficient DT given by, e.g., Oxygen Soret Diffusivity. Can
be a constant or variable.

Varname Maximum Solubility Real
The maximum solubility of the species in absolute mass units. Has to be a constant value.

Boundary Condition bc id
In advection-diffusion equation we may set the concentration directly by Dirichlet boundary condi-
tions or use mass flux condition. The natural boundary condition is zero flux condition.

Varname Real

Mass Transfer Coefficient Real

External Concentration Real
These two keywords are used to define flux condition that depends on the external concentration
and a mass transfer coefficient. This condition is only applicable to absolute mass formulation
of the equation (see keywords for Equation block).

Varname Flux Real
A user defined mass flux term in absolute mass units or, in case of scaling, in the scaled units.
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Physical Units Logical True
With this keyword, the flux boundary condition can be given in absolute mass units regardless of
scaling. Note that this keyword does NOT affect the Dirichlet boundary condition nor the mass
transfer coefficient bc.

Varname Solubility Change Boundary Logical True
This keyword marks the boundary over which the maximum solubility changes. Has to be present
for the mass flux continuity to be preserved.

Normal Target Body Integer bd id
In a solubility change boundary, this keyword can be used to control on which side the mass flux
compensation is done. Basically, this can be done on either side but there can be some effect on
the accuracy or on the speed of the solution. Recommended is to give as normal target the body
with less dense mesh, or the direction of average species transport. If normal target body is not
specified, the material with smaller density is used.
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Advection-Reaction Equation

Module name: AdvectionReaction
Module subroutines: AdvectionReactionSolver
Module authors: Mikko Lyly, Juha Ruokolainen, Thomas Zwinger
Document authors: Thomas Zwinger
Document edited: March 3rd 2009

4.1 Introduction
Advection-reaction equation describes the transport of a passive scalar quantity, c, by a fluid. The advected
quantity is assumed not to have an effect on the velocity field. Besides a reaction rate, advection-reaction
equation may have sources or sinks. If no reaction rate and source are given, this equation may be used to
trace passive scalars through a given flow-field. If a constant source of unity value is given, the equation also
may be used to evaluate the time a passive tracer has remained in the flow field.

4.2 Theory

4.2.1 Governing Equations
The advective transport of a scalar c can be written as

∂c

∂t
+ ~v · ∇c+ Γc = S, (4.1)

where ~v is the advection velocity, Γ is the reaction rate and S is a source/sink, depending on the sign.
Due to the absence of any diffusion, (4.1) has to be solved applying the Discontinuous Galerkin (DG)

method. Elmer implements the particular method as presented in [1]. In order to evaluated jumps across
partition boundaries in parallel computations, DG implies the utilization of halo-elements for domain de-
composition (see ElmerGrid manual for details).

4.2.2 Limiters
If the scalar has a lower, cmin ≤ c and/or an upper limit c ≤ cmax limit (where the limit can be also a
function of another variable), the variational form of (4.1) becomes a variational inequality. In order to
obtain a consistent solution a method using Dirichlet constraints within the domain is applied. The exact
procedure is the following:

1. construct the linear system: AAA~c = ~S, with the system matrix AAA and the solution vector ~c on the
left-hand side and the force vector ~S on the right hand side
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2. set nodes as active if the constraint is violated

3. for active nodes the matrix and force vector are manipulated such that effectively a Dirichlet condition
c = cmax/min is applied

4. the manipulated system is solved: ÃAA~̃c = ~̃S

5. a residual is obtained from the un-manipulated system: ~R = AAA~̃c− ~S

6. an active node is reset if the residual is R < 0 (for lower limit) and R > 0 (for upper limit)

The whole algorithm is iterated (within the non-linear iteration loop) until the limit given in Nonlinear
System Convergence Tolerance is reached. In the converged solution the residual represents the
needed accumulation/volume flux (on matrix level, hence not in physical units) needed in order to obtain the
limited solution. Consequently, the system not necessarily is volume conserving if the Dirichlet method is
applied.

4.2.3 Boundary Conditions
At boundaries, a Dirichlet boundary condition reads as

c = cb. (4.2)

By nature of the applied DG method, the condition above only applies at inflow boundaries, i.e., if

~v · ~nb < 0, (4.3)

where ~nb is the outwards facing surface normal of the boundary.
On the boundaries where no boundary condition is specified, the boundary condition c = 0 is applied

upon inflow.

4.3 Keywords
Simulation

The simulation section gives the case control data:

Simulation Type String
Advection-reaction equation may be either Transient or Steady State.

Coordinate System String
Defines the coordinate system to be used, one of: Cartesian 1D, Cartesian 2D, Cartesian
3D, Polar 2D, Polar 3D, Cylindric, Cylindric Symmetric and Axi
Symmetric.

Timestepping Method String
Possible values of this parameter are Newmark (an additional parameter Newmark Beta must
be given), BDF (BDF Order must be given). Also as a shortcut to Newmark-method with
values of Beta=0.0,0.5, 1.0 the keywords Explicit Euler, Crank-Nicolson,
and Implicit Euler may be given respectively. The recommended choice for the first order
time integration is the BDF method of order 2.

BDF Order Integer
Value may range from 1 to 5.

Newmark Beta Real
Value in range from 0.0 to 1.0. The value 0.0 equals to the explicit Euler integration method and
the value 1.0 equals to the implicit Euler method.

Solver solver id
The solver section defines equation solver control variables. Most of the possible keywords – related
to linear algebra, for example – are common for all the solvers and are explained elsewhere.
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Equation String [Advection Reaction Equation Variable_name]
The name of the equation, e.g., Advection Reaction Equation Tracer.

Discontinuous Galerkin Logical
needs to be set to true

Variable String Variable_name
The name of the variable, e.g., Tracer. As the variable is a DG variable (i.e., not renderable
e.g. in ElmerPost), the user usually adds the option -nooutput in order to avoid output in the
output files

Procedure File "AdvectionReaction" "AdvectionReactionSolver"
The name of the file and subroutine.

Nonlinear System Convergence Tolerance Real
The criterion to terminate the nonlinear iteration after the relative change of the norm of the field
variable between two consecutive iterations k is small enough

||ck − ck−1|| < ε||ck||,

where ε is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable c before
the whole system is deemed converged. The tolerance criterion is:

||ci − ci−1|| < ε||ci||,

where ε is the value given with this keyword.

Limit Solution Logical
Assumes the variational inequality method to apply, if set to true.

Exported Variable 1 String
in order to write the DG variable Variable_name to a for ElmerPost (non-DG mesh) read-
able variable, an exported variable with an arbitrary name (e.g., Exported Variable 1 =
Variable_name Nodal Result) has to be defined. It is then used to interpolate the DG
result to nodal values in order to display them.

Equation eq id
The equation section is used to define a set of equations for a body or set of bodies.

Convection String
The type of convection to be used in the advection-reaction equation, one of: None, Computed,
Constant.

Body Forces bf id
The body force section may be used to give additional force terms for the equations. The following
keyword is recognized by the solver:

Variable_name Source Real
defines the volumetric source for variable c

Initial Condition ic id
The initial condition section may be used to set initial values for the scalar c.

Variable_name Real
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Material mat id
The material section is used to give the material parameter values. The following material parameters
may be effective when advection-diffusion equation is solved.

Convection Velocity i Real
Convection velocity i= 1, 2, 3 for the constant convection model.

Variable_name Upper Limit Real
The upper limit, cmax, for variable Variable_name. Only used if keyword Limit Solution
for the solver is set to true

Variable_name Lower Limit Real
The upper limit, cmin, for variable Variable_name. Only used if keyword Limit Solution
for the solver is set to true

Variable_name Gamma Real
defines the reaction rate, Γ

Boundary Condition bc id

Variable_name Real sets the value for c at inflow boundaries

Bibliography
[1] F. Brezzi and E. Marini, .L. D.and Süli. Discontinuous Galerkin methods for first-order hyperbolic prob

lems. Math. Models Methods Appl. Sci., 14(12):1893–1903, 2004.
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Linear Elasticity Solver

Module name: included in solver
Module subroutines: StressSolve
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: 22.04.2007

5.1 Introduction
This module computes displacement field from Navier equations. The Navier equations correspond to linear
theory of elastic deformation of solids. The material may be anisotropic and stresses may be computed as a
post processing step, if requested by the user. Thermal stresses may also be requested.

5.2 Theory
The dynamical equation for elastic deformation of solids may be written as

ρ
∂2 ~d

∂t2
−∇ · τ = ~f, (5.1)

where ρ is density, ~d is the displacement field, ~f given volume force, and τ the stress tensor. Stress tensor is
given by

τ ij = Cijklεkl − βij(T − T0), (5.2)

where ε is the strain and quantity C is the elastic modulus. The elastic modulus is a fourth order tensor,
which has at the most 21 (in 3D, 10 in 2D) independent components due to symmetries. In Elmer thermal
stresses may be considered by giving the heat expansion tensor β and reference temperature of the stress free
state T0. The temperature field T may be solved by the heat equation solver or otherwise. The linearized
strains are given simply as:

ε =
1
2
(∇~d+ (∇~d)T ). (5.3)

For isotropic materials the elastic modulus tensor may be reduced to two independent values, either the
Lame parameters, or equivalently to Youngs modulus and Poisson ratio. The stress tensor given in terms of
Lame parameters is:

τ = 2µε+ λ∇ · ~dI − β(T − T0)I, (5.4)

where µ and λ are the first and second Lame parameters respectively, β the heat expansion coefficient, and
I is the unit tensor. Lame parameters in terms of Youngs modulus and Poisson ratio read

λ =
Y κ

(1 + κ)(1− 2κ)
, µ =

Y

2(1 + κ)
(5.5)
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except for plane stress situations (τz = 0) where µ is defined as

µ =
Y κ

(1− κ2)
. (5.6)

Quantities Y and κ are the Youngs modulus and Poisson ratio respectively.
For anisotropic materials, the stress-strain relations may be given in somewhat different form:

τV = EεV , (5.7)

where τV and εV are the stress and strain vectors respectively. The 6 × 6 matrix E (in 3D, 4 × 4 in 2D) is
the matrix of elastic coefficients. The stress and strain vectors are defined as

τV = (τx τy τz τxy τyz τxz)
T (5.8)

and
εV = (εx εy εz 2εxy 2εyz 2εxz)

T
. (5.9)

In 2D the stress vector is
τV = (τx τy τz τxy)

T (5.10)

and the strain vector
εV = (εx εy εz 2εxy)

T
. (5.11)

When plane stress computation is requested τz = 0, otherwise εz = 0. Cylindrically symmetric case is
identical to the 2D case, the components are given in the order of r, z, and φ. The matrix E is given as input
for the anisotropic material model of Elmer.

In addition to steady state and time dependent equations, modal and stability analysis may be considered.
In modal analysis the Fourier transform of the homogeneous form of the dynamical equation is

ρω2~φ = ∇ · τ(~φ), (5.12)

or
ω2

∫
Ω

ρφkψk dΩ =
∫

Ω

τij(~φ)εij(~ψ) dΩ, (5.13)

where ω is the angular frequency and ~φ is the corresponding vibration mode.
When modal analysis of pre-stressed solids are considered, we first perform a steady analysis to compute

stress tensor, here denoted by σij , and solve the variational equation

ω2

∫
Ω

ρφkψk dΩ =
∫

Ω

τij(~φ)εij(~ψ) dΩ +
∫

Ω

σij
∂φk
∂xi

∂ψk
∂xj

dΩ. (5.14)

The last term on the right-hand-side represents here the geometric stiffness due to external loads, thermal
stresses etc.

In stability analysis the buckling modes ~φ are obtained from

− λ

∫
Ω

σij
∂φk
∂xi

∂ψk
∂xj

dΩ =
∫

Ω

τij(~φ)εij(~ψ) dΩ, (5.15)

where λ is the margin of safety with respect to bifurcation (the current load can be multiplied by factor λ
before stability is lost).

The equations may be interpreted as generalized eigenproblems and solved with standard techniques.

5.2.1 Boundary Conditions
For each boundary either a Dirichlet boundary condition

di = dbi (5.16)

or a force boundary condition
τ · ~n = ~g (5.17)

must be given.
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5.2.2 Model Lumping
For linear structures it is possible to create a lumped model that gives the same dependence between force
and displacement as the original distributed model,

~F = K ~D (5.18)

where ~F = (Fx Fy FzMxMyMz)T and ~X = (DxDyDz φx φy φz)T . However, the lumped model is not
uniquely defined as it depends on the force or displacement distribution used in the model lumping. In the
current model lumping procedure the lumping is done with respect to a given boundary. The lumped force
and momentum are then integrals over this boundary,

Fi =
∫
A

fi dA. (5.19)

Lumped displacements and angles are determined as the mean values over the boundary,

Di =
1
A

∫
A

di dA. (5.20)

Therefore the methodology works best if the boundary is quite rigid in itself.
There are two different model lumping algorithms. The first one uses pure lumped forces and lumped

moments to define the corresponding displacements and angles. In 3D this means six different permutations.
Each permutation gives one row of the inverse matrix K−1. Pure lumped forces are obtained by constant
force distributions whereas pure moments are obtained by linearly varying loads vanishing at the center of
area. Pure moments are easily achieved only for relatively simple boundaries which may limit the usability
of the model lumping utility.

The second choice for model lumping is to set pure translations and rotations on the boundary and
compute the resulting forces on the boundary. This method is not limited by geometric constraints. Also
here six permutations are required to get the required data. In this method the resulting matrix equation is
often better behaving as in the model lumping by pure forces which may be a reason anonther reason to
favour this procedure.

5.3 Keywords
Solver solver id

Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Stress Analysis]
The name of the equation.

Eigen Analysis Logical
Modal or stability analysis may be requested with this keyword.

Eigen System Values Integer
The number of the lowest eigen states must be given with this keyword, if modal or stability
analysis is in effect.

Harmonic Analysis Logical
Time-harmonic analysis where the solution becomes complex if damping is defined. The solu-
tion algorithm assumes that the diagonal entries in the matrix equation dominates.

Frequency Real
The frequency related to the harmonic analysis. If the simulation type is scanning this may a
scalar function, otherwise it is assumed to be a vector of the desired frequencies.

Stability Analysis Logical
If set to true, then eigen analysis is stability analysis. Otherwise modal analysis is performed.
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Geometric Stiffness Logical
If set to true, then geometric stiffness is taken into account in modal analysis.

Calculate Stresses Logical
If set to true the stress tensor will be computed and written to output in addition to Von Mises
stress.

Model Lumping Logical
If model lumping is desired this flag should be set to True.

Model Lumping Filename File
The results from model lumping are saved into an external file the name of which is given by
this keyword.

Fix Displacements Logical
This keyword defined if the displacements or forces are set and thereby chooces the model lump-
ing aklgorhitm.

Constant Bulk System Logical
For some type of analysis only the boundary conditions change from one subroutine call to
another. Then the original matrix may be maintaied using this logical keyword. The purpose is
mainly to save time spent on matrix assembly.

Update Transient System Logical
Even if the matrix is defined constant it may change with time. The time may also be pseudo-time
and then for example the frequency could change with time thus making the harmonic system
different between each timestep. This keyword has effect only if the previous keyword is also
defined to be true.

Equation eq id
The equation section is used to define a set of equations for a body or set of bodies:

Stress Analysis Logical
if set to True, solve the Navier equations.

Plane Stress Logical
If set to True, compute the solution according to the plane stress situtation τzz = 0. Applies
only in 2D.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Stress Bodyforce 1,2,3 Real
May be used to give volume force.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variables are active:

Displacement i Real
For each displacement component i= 1, 2, 3.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier equations.

Density Real The value of density is given with this keyword. The value may be constant, or
variable.

Poisson Ratio Real
For isotropic materials Poisson ratio must be given with this keyword.
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Youngs Modulus Real
The elastic modulus must be given with this keyword. The modulus may be given as a scalar for
the isotropic case or as 6 × 6 (3D) or 4 × 4 (2D and axisymmetric) matrix for the anisotropic
case. Although the matrices are symmetric, all entries must be given.

Heat Expansion Coefficient Real
If thermal stresses are to be computed this keyword may be used to give the value of the heat
expansion coefficient. May also be given as 3 × 3 tensor for 3D cases, and 2 × 2 tensor for 2D
cases.

Reference Temperature Real
If thermal stresses are to be computed this keyword may be used to give the value of the reference
temperature of the stress free state.

Rotate Elasticity Tensor Logical
For anisotropic materials the principal directions of anisotropy do not always correspond to the
coordinate axes. Setting this keyord to True enables the user to input Youngs Modulus matrix
with respect to the principal directions of anisotropy. Otherwise Youngs Modulus should be
given with respect to the coordinate axis directions.

Material Coordinates Unit Vector 1(3) Real [1 0 0]

Material Coordinates Unit Vector 2(3) Real [0 0.7071 0.7071]

Material Coordinates Unit Vector 3(3) Real [0 -0.7071 0.7071]
The above vectors define the principal directions of the anisotropic material. These are needed
only if Rotate Elasticity Tensor is set to True. The values given above define the
direction of anisotropy to differ from the coordinate axes by a rotation of 45 degrees about x-axis,
for example.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier
equations are

Displacement i Real
Dirichlet boundary condition for each displacement component i= 1, 2, 3.

Normal-Tangential Displacement Logical
The Dirichlet conditions for the vector variables may be given in normal-tangential coordinate
system instead of the coordinate axis directed system. The first component will in this case be
the normal component and the components 2, 3 two orthogonal tangent directions.

Normal Force Real
A force normal to the boundary is given with this keyword.

Force i Real
A force in the given in coordinate directions i= 1, 2, 3.

Model Lumping Boundary Logical True
When using the model lumping utility the user must define which boundary is to be loaded in
order to determined the lumped model.
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Mesh Adaptation Solver

Module name: MeshSolve
Module subroutines: MeshSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: April 5th 2002

6.1 Introduction
Moving boundaries are often encourtered in different types of computations, i.e. Fluid-Structure-Interaction
(FSI) problems. Moving boundaries pose the problem of mesh adaptation to the boundaries. With this solver,
instead of generating the whole mesh afresh when a boundary is moved, the current mesh nodes are moved
so that the mesh hopefully remains ’good’. This type of solution only applies to cases where the changes
in geometry are relatively small. It is, however, often cheaper in terms of CPU time to use this module in
contranst to regenerate the whole mesh.

For time dependent simulations the mesh deformation velocity is also computed. The name of this
variable is Mesh Velocity.

6.2 Theory
The equation for elastic deformation of the mesh, given displacement of the boundaries, may be written as

−∇ · τ = 0, (6.1)

where, ~d is the mesh displacement field and τ the stress tensor.
The stress tensor given in terms of Lame parameters is:

τ = 2µε+ λ∇ · ~dI (6.2)

where µ and λ are the first and second Lame parameters respectively, and I is the unit tensor. The linearized
strains are given as:

ε =
1
2
(∇~d+ (∇~d)T ). (6.3)

Lame parameters in terms of Youngs modulus and Poisson ratio read

µ =
Y κ

(1− κ)(1− 2κ)
, λ =

Y

2(1 + κ)
(6.4)

Quantities Y and κ are the Youngs modulus and Poisson ratio respectively. Note that in this context the
values of the material parameters are fictional, and may be chosen to help convergence or quality of the
resulting mesh.
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6.2.1 Boundary Conditions
For each boundary a Dirichlet boundary condition

di = dbi (6.5)

may be given. Usually this the displacement is given a priori or computed by, for example, the elasticity
solvers.

6.3 Keywords
Solver solver id

Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Mesh Update]
The name of the equation. If different from the default name Mesh Update then the following
two keywords must be defined as well.

Procedure File "NonphysicalMeshSolve" "NonphysicalMeshSolver"
Name of the solver subroutine.

Variable String
Name of the variable.

Equation eq id
The equation section is used to define a set of equations for a body or set of bodies:

Mesh Update Logical
if set to True, solve the mesh adaptation equations.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier equations.

Poisson Ratio Real
For isotropic materials Poisson ratio must be given with this keyword.

Youngs Modulus Real
The elastic modulus must be given with this keyword.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier
equations are

Mesh Update i Real
Dirichlet boundary condition for each displacement component i= 1, 2, 3. The boundary dis-
placement may be computed some other solver. The computed displacment field then may be
used in the setting in the following way:

Mesh Update i Equals Displacement i with i=1,2,3. Including such lines in the
boundary condition setting will give the mesh update on the boundary directly from the dis-
placement solver.
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6.4 Examples

6.4.1 A Simple FSI computation using MeshSolver
In this simple computation Navier-Stokes equations are solved in the domain shown in the two pictures
below. On the left there is an inflow boundary, and on the right an outflow boundary. In the block inside the
flow domain (the mesh is not shown for the block), the elasticity equations are solved. The block is fixed at
the bottom, and is otherwise deformed by the fluid pressure and flow fields. The whole system is iterated as
follows:

• Solve fluid flow,

• Solve deformation of the block,

• Solve the fluid domain mesh with MeshSolver according to the displacements of the block,

until convergence is obtained.

Figure 6.1: The original computational mesh (up), and the mesh of the converged solution (down) of a FSI
computation.
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Elastic Linear Plate Solver

Module name: Smitc
Module subroutines: SmitcSolver
Module authors: Mikko Lyly, Jani Paavilainen
Document authors: Mikko Lyly, Peter Råback
Document created: August 26th 2002

7.1 Introduction
The linear elastic plate elements of Elmer are based on the shear deformable model of Reissner and Mindlin.The
finite element discretization is performed using the so called stabilized MITC-plate elements, which are free
from numerical locking.

7.1.1 Reissner-Mindlin model
The displacement ~u = (ux, uy, uz) of a Reissner-Mindlin plate (thin or moderately thick linearly elastic
body which in its undeformed reference configuration occupies the three dimensional region Ω × (− t

2 ,
t
2 ),

where Ω is the midsurface and t the thickness) is obtained from the kinematic equations

ux(x, y, z) = −θx(x, y) · z (7.1)
uy(x, y, z) = −θy(x, y) · z (7.2)
uz(x, y, z) = w(x, y) (7.3)

where θx and θy are components of the rotation vector θ = (θx, θy) and w is the transverse deflection of the
mid-surface, see Figure 1.

The functionsw and θ = (θx, θy) are determined from the condition that they minimize the total potential
energy

1
2

∫
Ω

κ : m dΩ +
∫

Ω

γ · q dΩ−
∫

Ω

pw dΩ (7.4)

where p is the transverse pressure load, κ = 1
2 (∇θ+∇θT ) is the curvature of the mid-surface, γ = ∇w− θ

is the transverse shear strain, m = E : κ is the bending moment, and q = G · γ the transverse shear force
vector. The fourth order tensor E and second order tensor G define the bending and shear rigidities of the
cross section, respectively. For linearly elastic materials we have G · γ = Gtγ and

E : κ = K[κ+
ν

1− ν
(trκ)I] (7.5)

where K = Et3/[12(1− ν2)] is the bending stiffness, E is Young’s modulus, G shear modulus, and ν
Poisson ratio. The design of the tensors E and G for orthoropic and perforated materials is discussed in
section 7.3.
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The minimizer of the energy satisfies the equilibrium equations

∇ ·m+ q = 0 (7.6)
−∇ · q = p (7.7)

7.1.2 Surface tension
When surface tension is present, the following term is added to the energy:

1
2

∫
Ω

∇w · T · ∇w dΩ (7.8)

where T is a second order tensor representing the given normal force (usually T = TI , where T is constant).
The equilibrium equation (7.7) is then rewritten as

−∇ · (q + T · ∇w) = p (7.9)

7.1.3 Boundary conditions
The following boundary conditions can be applied in the Reissner-Mindlin plate model:

• Soft fixed edge: w = 0 and θ · n = 0

• Hard fixed edge: w = 0 and θ = 0

• Soft simply supported edge: w = 0

• Hard simply supported edge: w = 0 and θ · t = 0

• Free edge: m · n = 0 and (q + T · ∇w) · n = 0

The boundary conditions can of course be non-homogenous as well. For fixed and simply supported edges
the prescribed values of w, θ, θ · n, and θ · t, are taken into account on matrix level after finite element
discretization. On the free part of the edge, the non-homogenous case is trated by adding the following
terms in the energy: ∫

Γfree

qnw dΓ +
∫

Γfree

mn · θ dΓ (7.10)

where qn = q · n and mn = m · n are prescribed functions.

7.1.4 Kirchhoff plates
When the thickness of the plate is small (t << diam(Ω)), the Reissner-Mindlin model can be considered
as a penalty approximation of the classical plate model of Kirchhoff. The Kirchhoff model is obtained from
(7.1)-(7.9) by enforcing the constraint γ = 0. The governing equations are then reduced to

K∆∆w − T∆w = p (7.11)

7.1.5 Transient and natural mode analysis
A transient plate model is obtained by adding the interia term ρtẅ on the left hand-side of (7.7), (7.9), and
(7.11). Here ρ is the density of the material. The natural vibration frequencies and mode shapes are then
obtained by taking p = 0 and solving the Fourier transformed equations.
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7.2 Finite element implementation
The direct minimization of (7.4) using the standard Galerkin finite element method fails due to the well
known numerical locking phenomena (the method is unable to deal with the Kirchhoff constraint γ = 0,
which becomes valid when t is small). In order to avoid locking, Elmer utilizes the so called SMITC
(Stabilization and Mixed Interpolation of Tensorial Components) elements, which are known to be optimally
convergent and work well under all conditions [4].

The linear element of the SMITC-family was first introduced by Brezzi, Fortin and Stenberg in [2]. The
method is defined by replacing the shear energy term in (7.4) by the following numerical modification:∫

Ω

γ
h
· q
h
dΩ (7.12)

where γ
h

is called the reduced shear strain (sometimes also referred to as the assumed or substitute shear)
and q

h
= (t2 + αh2)−1G · γ

h
the reduced shear force. Here h is the mesh size (the diameter of the biggest

element) and α > 0 is a numerical stabilization parameter (typically α = 0.15).
The reduced shear γ

h
is defined elementwise such that

γ
h|K = (aK − bKy, aK + cKx) (7.13)

for any element K. The parameters aK , bK , and cK , are determined from the conditions∫
E

(γ − γ
h
) · t ds = 0 (7.14)

for every edge E of K. Here t is the counterclockwise tangent to E.
It has been shown [3] that the linear SMITC-element is equivalent to the T3BL (Triangle, 3 nodes,

Linked Interpolation) element of Xu, Auricchio and Taylor [8, 1], the anisoparametrically interpolateed
MIN3 element of Tessler and Hughes [7], and the TRIA3 element of MacNeal [5]. We refer to [3] for a
more detailed discussion.

7.3 Elastic parameters for perforated plates
In microelectromechanical systems the plate stuctures are often perforated in order to reduce the squeezed-
film damping effect. This has also an effect on the elasticity equation. If there are so many holes that it is
not feasible to treat them individually their effect may be homogenized over the whole structure. In practice
this means that the original elastic parameters are replaced by effective parameters that take into account the
holes. This method was reported by Pedersen et al. [6] and implemented into the solver by Jani Paavilainen.

In the homogenization effective parameters for an ortotropic plate are defined so that the unperforated
model approximates the perforated plate. The basic idea is to set the analytical expressions of the deforma-
tion energies of the perforated and unperforated plates equal. This method is inherently limited to simple
geometries where analytical expressions may be found. So far, only square holes have been implemented in
the solver.

The unit cell of a perforated plate may be assumed to consist of one small square plate with side b− 2a,
and of four beams of length a as shown in Figure 7.1. Using approximate formulas an analytical formula for
the deformation energy of the perforated plate is obtained. This has to be equal to the deformation energy of
an unperforated ortoropic membrane. From this condition we get a set of equations from which the effective
parameters may be solved.

The elasticity tensor has three independent components, C11 = C22, C12 = C21, and C44. The expres-
sions for these are [6],

C11 = C22 =
E

b2

{
b(b− 2a)
1− ν2

+
a(b− 2a)2

b

}
(7.15)

C12 = C21 =
νE(b− 2a)
b(1− ν2)

(7.16)

C44 =
E

4b2(1 + ν)

{
2b(b− 2a) +

12Ka(b− 2a)
bh3

}
. (7.17)
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basic
element

2a
b

b

Figure 7.1: The basic element of the perforated plate consisting of five rectangular beams

where K is a constant1, defined as

K =

{
1
3

(
1− 0.63 b−2a

h

)
(b− 2a)3h, jos h > b− 2a

1
3

(
1− 0.63 h

b−2a

)
(b− 2a)h3, jos h < b− 2a.

(7.18)

The midplane tension of the perfomarated plate may be reduced to lateral stresses of the ortotropic plate
by a simple scaling,

T =
√

(1− 4a2/b2)T0, (7.19)

where is the tension T0 of the perforated plate. Using this reduced tension and the modified material param-
eters of equations (7.15), (7.16) and (7.17) the ortoropic plate mimics the behavior of the perforated plate
when looking at macroscopic quantities. However, the model is not suitable for approximating maximum
stresses around the holes, for example.

7.4 Keywords
Solver solver id

Equation String SmitcSolver

Procedure File "Smitc" "SmitcSolver"
The procedure which inludes the linear plate model.

Variable String Deflection
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 3
Degrees of freedom for the deflection. The first degree is the displacment and the two following
ones are its derivatives in the direction of the coordinate axis.

Eigen Analysis Logical
Also the eigenvalues and eigenmodes of the elasticity equation may be computed. This is done
automatically by calling a eigensolver after the original equation has been solved. The default is
False.

1In article [6] there is an error in the definition of K. In the article there is an expression (b − 2a)/h3, which would make K
discontinuous at h = b− 2a.
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Eigen System Values Integer
If the eigenvalues are computed this keyword gives the number of eigenmodes to be computed.
The lowest eigenvalues are always solved for.

Hole Correction Logical
If the plate is perforated the holes may be taken into account by a homogenized model. This is
activated with this keyword. The default is False.

Procedure File "Smict" "SmitcSolver"

Material mat id

Density Real
Density of the plate.

Poisson ratio Real

Youngs modulus Real
The elastic parameters are given with Youngs modulus and Poisson ratio.

Thickness Real
Thickness of the plate.

Tension Real
The plate may be pre-stressed.

Hole Size Real

Hole Fraction Real
If Hole Correction is True the solver tries to find the size and relative fraction of the
holes. If these are present the hole is assumed to be a square hole.

Boundary Condition bc id

Deflection i Real
Dirichlet BC for the components of the deflection, i=1,2,3.

Body Force bf id

Pressure Real
Possibility for a body forces. For coupled systems there is a possibility to have up to three forces.
The two others are then marked with Pressure B and Pressure C.

Spring Real
The local spring which results to a local force when multiplyed by the displacement.

Damping Real
The local damping which results to a local force when multiplyed by the displacement velocity.
The spring and damping may also be defined as material parameters.
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Helmholtz Solver

Module name: HelmholtzSolve
Module subroutines: HelmholtzSolver
Module authors: Juha Ruokolainen, Mikko Lyly
Document authors: Juha Ruokolainen
Document edited: March 30th 2006

8.1 Introduction
This module solves the Helmholtz equation, which is the Fourier transform of the wave equation.

8.2 Theory
For example, sound propagation in air is fairly well described by the wave equation:

1
c2
∂2p

∂t2
−∇2p = 0. (8.1)

When linear the equation may be written in frequency space as

k2P +∇2P = 0, (8.2)

where k = ω/c. This is the Helmholtz equation. The instantaneous pressure may be computed from the
given field P :

p(t) = <(Peiωt) = <(P ) cos(ωt)−=(P ) sin(ωt), (8.3)

where i =
√
−1 is the imaginary unity.

In Elmer the equation has an added term which is proportional to first time derivative of the field, where-
upon the equation becomes

(k2 − ikD)P +∇2P = 0, (8.4)

where D is the damping factor.

8.2.1 Boundary Conditions
The usual boundary condition for the Helmholtz equation is to give the flux on the boundary:

∇P · ~n = g, (8.5)

also Dirichlet boundary conditions may be set. The Sommerfeldt or far field boundary condition is as follows

∇P · ~n+
iω

Z
P = 0, (8.6)
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where the complex-valued quantity Z may be defined by the user. It is noted that incoming and outgoing
waves may be approximated by setting Z = ±c, respectively.

8.3 Keywords
Simulation

This section gives values to parameters concerning the simulation as whole.

Frequency Real
Give simulation frequency in units of 1/s. Alternatively use the Angular Frequency key-
word.

Angular Frequency Real
Give simulation frequency in units of 1/rad. Alternatively use the Frequency keyword.

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that for the Helmholtz equation ILUT
preconditioning works well.

Equation String [Helmholtz]
The name of the equation.

Procedure File ["HelmholtzSolve" "HelmholtzSolver"]
This keyword is used to give the Elmer solver the place where to search for the Helmholtz
equation solver.

Variable String [Pressure]
Give a name to the field variable.

Variable DOFs Integer [2]
This keyword must be present, and must be set to the value 2.

Bubbles Logical
If set to True this keyword activates the bubble stabilization.

Equation eq id
The equation section is used to define a set of equations for a body or set of bodies:

Helmholtz Logical
If set to True, solve the Helmholtz equation, the name of the variable must match the Equation
setting in the Solver section.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variables are active:

Pressure i Real
For each the real and imaginary parts of the solved field i= 1, 2.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Helmholtz equation.

Sound Speed Real
This keyword is use to give the value of the speed of sound.

Sound Damping Real
This keyword is use to give the value of the damping factor D in equation 8.4.
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Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to
Helmholtz equations are

Pressure i Real
Dirichlet boundary condition
for real and imaginary parts of the variable. Here the values i= 1, 2 correspond to the real and
imaginary parts of the unknown field.

Wave Flux 1,2 Real
Real and imaginary parts of the boundary flux. Here the values i= 1, 2 correspond to the real
and imaginary parts of the boundary flux.

Wave Impedance 1,2 Real
This keyword may be used to define the real and imaginary parts of the quantity Z in (8.6). Here
the values i= 1, 2 correspond to the real and imaginary parts of Z.
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Electrostatics

Module name: StatElecSolve
Module subroutines: StatElecSolver
Module authors: Leila Puska, Antti Pursula, Peter Råback
Document authors: Peter Råback, Antti Pursula
Document edited: June 29th 2006

9.1 Introduction
The macroscopic electromagnetic theory is governed by the Maxwell’s equations. In Elmer it is possible to
solve the electrostatic potential in linear dielectric material and in conducting medium. The dielectric case
is described in this Chapter. For static currents, refer to Chapter 10. Based on the potential, various field
variables as well as physical parameters, such as capacitance, can be calculated.

9.2 Theory
When εµc2 << 1 we may assume that the Maxwell’s equations are:

∇ · ~D = ρ (9.1)
∇ · ~B = 0 (9.2)

∇× ~E = −∂
~B

∂t
(9.3)

∇× ~H = ~J +
∂ ~D

∂t
(9.4)

For linear materials the fields and fluxes are simply related, ~B = µ ~H ăand ~D = ε ~E, where the permittivity
ε = ε0εr is defined through the permittivity of vacuum ε0 and the relative permittivity of the material εr.

In steady-state case the electric field may be expressed with a help of an electric scalar potential φ,

~E = −∇φ. (9.5)

Assuming linear material law and using equation 9.1 gives

−∇ · ε∇φ = ρ. (9.6)

This is the electrostatic equation for non-conducting media.
The energy density of the field is

e =
1
2
~E · ~D =

1
2
ε(∇φ)2. (9.7)
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Thus the total energy of the field may be computed from

E =
1
2

∫
Ω

ε(∇φ)2dΩ. (9.8)

If there is only one potential difference Φ present then the capacitance C may be computed from

C =
2E
Φ2

. (9.9)

9.2.1 Boundary Conditions
For electric potential either Dirichlet or Neumann boundary condition can be used. The Dirichlet boundary
condition gives the value of the potential on specified boundaries. The Neumann boundary condition is used
to give a flux condition on specified boundaries

− ε∇φ · ~n = g. (9.10)

The flux may be defined e.g. by the surface dharge density: g = σ.
Conductors are often covered by thin oxidation layers which may contain static charges. The effect of

these charges can be taken into account by Robin type of boundary condition which combines the fixed
potential value on the conductor and the flux condition due to the static charges

ε∇φ · ~n =
εh
h
φ− 1

2
ρh− εh

h
Φ0 on the boundary, (9.11)

where εh and h are the permittivity and the thickness of the oxidation layer respectively, ρ is the static charge
density of the layer, and Φ0 is the fixed potential on the conductor.

Note that this formulation is valid only for thin layers. For a larger layer a separate body should be added
and a source defined for that.

9.2.2 Capacitance matrix
There is a possibility to compute the capacitance matrix. The algorithm takes use of the original matrix A
before to the initial conditions are set. Now the point charges are given by

q = Aφ. (9.12)

The induced charges on a body may be computed by summing up the point charges.
If there fre n different bodies the boundary conditions are permutated n times so that body i gets a

potential unity while others are set to zero potential.

Cij =
∑
Γj

q. (9.13)

The symmetry of the matrix is ensured afterwords by setting

C =
1
2
(C + CT ). (9.14)

9.3 Notes on output control
The user can control which derived quantities (from the list of electric field, electric flux, electric energy,
surface charge density and capacitance matrix) are calculated.

There are also available two choises of visualization types for the derived quantities. The node values
can be calculated by taking the average of the derived values on neighbouring elements (constant weights).
This results often in visually good images. The other possible choice is to weight the average with the size of
the elements, which is more accurate and should be used when some other variable depends on these derived
values. The latter choice is also the default.

CSC – IT Center for Science



9. Electrostatics 55

9.4 Keywords
Constants

Permittivity Of Vacuum Real [8.8542e-12]

Solver solver id

Equation String Stat Elec Solver

Variable String Potential
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File "StatElecSolve" "StatElecSolver"
Following are listed four keywords with default values for output control.

Calculate Electric Field Logical [True]

Calculate Electric Flux Logical [True]

Calculate Electric Energy Logical [False]

Calculate Surface Charge Logical [False]

Calculate Capacitance Matrix Logical [False]

Capacitance Bodies Integer
In case of a capacitance matrix computation the number of bodies at different potential must be
given (not accounting the ground).

Capacitance Matrix Filename String
The name of the file where capacitance matrix is being saved. The default is cmatrix.dat.

Constant Weights Logical [True]
Used to turn constant weighting on for the results.

Potential Difference Real
Used to give the potential difference for which the capacitance is calculated, when capcitance
matrix calculation is not performed. This keyword gives thus the voltage between the electrodes
of a simple capacitor. The voltage has to be consistent with the potentials defined in boundary
conditions.

Material mat id

Relative Permittivity Real

Body Force bodyforce id

Charge Density Real

Boundary Condition bc id

Potential Real

Electric Flux BC Logical
Must be set to True if electric flux BC or oxidation layer BC is used.

Electric Flux Real
Neumann boundary condition.

Surface Charge Density Real
Another way to define flux condition. Identical to the previous keyword.

The following five keywords are used if a thin oxidation layer is modeled. Note that these are only
active if the Electric Flux BC keyword is set to True.
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Layer Thickness Real
Defines the thickness of the oxidation layer. This is presumed to extend on the outside the
boundary.

Layer Relative Permittivity Real
The relative permittivity of the oxidation layer.

Layer Charge Density Real
The volume charge density in the oxidation layer.

Electrode Potential Real
The potential on the conductor behind the oxidation layer.

Nominal Potential Difference Real
The potential difference of the system.

Capacitance Body Integer i
These should number from i=1 up to Capacitance Bodies. The ground may be given
directly with zero potential or with value 0 for this keyword. This definition is only needed in
the computation of the capacitance matrix where the potential is permutated in a very specific
way.
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Static Current Conduction

Module name: StatCurrentSolve
Module subroutines: StatCurrentSolver
Module authors: Leila Puska, Antti Pursula, Peter Råback
Document authors: Antti Pursula
Document edited: August 2nd 2002

10.1 Introduction
The macroscopic electromagnetic theory is governed by the Maxwell’s equations. This module solves the
electrostatic potential in conducting medium allowing volume currents and electric power loss (Joule heat-
ing) to be derived.

10.2 Theory
In quasi-static approximation, when εµc2 << 1, the first and fourth Maxwell equation can be written as
follows

∇ · ~D = ρ (10.1)

∇× ~H = ~J +
∂ ~D

∂t
(10.2)

The continuity equation for electric charges is easily derived from the above Maxwell Eqs. 10.1 and 10.2

∂ρ

∂t
+∇ · ~J = 0 (10.3)

The Ohm’s law for conducting material gives the relationship between current density and electric field,

~J = σ ~E (10.4)

In steady-state case the electric field may be expressed with a help of an electric scalar potential φ,

~E = −∇φ. (10.5)

Starting from the continuity equation 10.3 and using Eqs. 10.4 and 10.5 we get

∇ · σ∇φ =
∂ρ

∂t
. (10.6)

This Poisson equation is used to solve the electric potential. The source term is often zero but in some cases
it might be necessary.
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The volume current density is now calculated by

~J = −σ∇φ, (10.7)

and electric power loss density which is turned into heat by

h = ∇φ · σ∇φ. (10.8)

The latter is often called the Joule heating. The total heating power is found by integrating the above equation
over the conducting volume.

10.2.1 Boundary Conditions
For electric potential either Dirichlet or Neumann boundary condition can be used. The Dirichlet boundary
condition gives the value of the potential on specified boundaries. The Neumann boundary condition is used
to give a current Jb on specified boundaries

Jb = σ∇φ · ~n. (10.9)

10.2.2 Power and current control
Sometimes the desired power or corrent of the system is known a priori. The control may be applied to the
system. When the electric potential has been computed the heating power may be estimated from

P =
∫

Ω

∇φ · σ∇φdΩ. (10.10)

If there is a potential difference U in the system the effective resistance may also be computed from R =
U2/P and the effective current from I = P/U .

The control is achieved by multiplying the potential and all derived field by a suitable variable. For
power control the coefficient is

CP =
√
P0/P , (10.11)

where P0 is the desired power. For current control the coefficient is

CI = I0/I, (10.12)

where I0 is the desired total current.

10.3 Note on output control
The user can control which derived quantities (i.e. volume current and Joule heating) are calculated and
additionally specify if he/she wants to output also the electric conductivity. The latter is useful when the
conductivity depends for example on temperature. This feature is available only for isotropic (scalar) con-
ductivities.

There are also available two choises of visualization types for the derived quantities. The node values
can be calculated by taking the average of the derived values on neighbouring elements (constant weights).
This results often in visually good images. The other possible choice is to weight the average with the size of
the elements, which is more accurate and should be used when some other variable depends on these derived
values. The latter choice is also the default.

10.4 Keywords
Solver solver id

Equation String Stat Current Solver
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Variable String Potential
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File "StatCurrentSolve" "StatCurrentSolver"
Following are listed three keywords with default values for output control.

Calculate Volume Current Logical [True]

Calculate Joule Heating Logical [True]

Constant Weights Logical [True]
Used to turn constant weighting on for the results.

Power Control Real
Apply power control with the desired heating power being P0.

Current Control Real
Apply current control with the desired current being I0.

Material mat id

Electric Conductivity Real

Body Force bodyforce id

Current Source Real
Possibility for a current source, not used often though.

Joule Heat Logical
If this flag is active the Heat equation will automatically compute the quantity ∇φ · σ∇φ as heat
source. Then it is assumed that φ is named Potential. If there is no heat equation this flag
has no effect.

Boundary Condition bc id

Potential Real
Dirichlet BC for the potential.

Current Density BC Logical
Must be set to True if Neumann BC is used.

Current Density Real
Neumann boundary condition for the current.
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Magnetostatics

Module name: StatMagSolve
Module subroutines: StatMagSolver
Module authors: Juha Ruokolainen, Ville Savolainen, Jussi Heikonen, Peter Råback, Antti Pursula
Document authors: Ville Savolainen, Peter Råback, Antti Pursula
Document edited: June 29th 2006

11.1 Introduction
The Maxwell’s equations may generally be expressed with a scalar and a vector potential. The magnetic
field is then the curl of the vector potential. In some cases the scalar potential vanishes and the system is
fully described by the vector potential. These cases includes magnetostatics and time-harmonic induction at
low frequencies.

Magnetostatics describes the time-independent magnetic fields. The magnetic field may be created by
electromagnets with given current distributions or permanent ferromagnets. This solver allows the first
option, with non-homogeneous and non-linear magnetic materials.

In some cases the current density varies sinusoidally with time. If the field varies slowly and there are
no conductors in the system the problem is described with the stationary model. However, in conductors the
magnetic field results in additional currents that make the equation complex.

11.2 Theory
When there are no hard ferromagnets, the magnetostatics problems may be expressed with magnetic vector
potential ~A that satisfies ~B = ∇ × ~A. It is obtained directly from the Ampère’s law, with displacement
current ignored, that

∇×
(

1
µ
∇× ~A

)
= ~.

Here µ is the magnetic permeability of the material. The equation may be non-linear through the magnetic
permeability curve of a ferromagnetic material.

The equation above may be solved either in axial symmetry or in three dimensions. In 3D, a curl vector
identity is used to transform the equation into the form

− 1
µ
∇2 ~A = ~,

which is valid when µ is not a function of space coordinates. Also, the vector potential ~A is a priori assumed
to satisfy the Coulomb gauge (∇ · ~A = 0).
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If there are conductors in the system the electric field is obtained from

~E = σ
∂ ~A

∂t
,

where σ is the electric conductivity. In time-harmonic case the current density is sinusoidal ~ = ~0e
iωt,

where ω = 2πf is the angular frequency. Using a trial ~A = ~A0e
iωt we obtain an equation for the amplitude

∇×
(

1
µ
∇× ~A0

)
+ iωσ ~A0 = ~0.

If the geometry is axisymmetric, then the magnetic flux density ~B has only r- and z-components, and
the current density ~ and the vector potential ~A only φ-components, and

∇×
(

1
µ
∇×Aφ~eφ

)
+ iωσAφ~eφ = jφ~eφ. (11.1)

The current density is given as a body force with the keyword Current Density. The vector potential
satisfies now automatically the Coulomb gauge.

In stady state case Aφ is real and there is only one unknown. In the harmonic case the equation has two
unknowns – the in-phase and the out-of-phase component of the vector potential. After solution the heat
generation in the conductors may be computed from

h =
1
2
σω2| ~A0|2.

The magnetic flux density is calculated as a post-processing step from the vector potential. Both the vec-
tor potential and the magnetic flux density components are written in the result and ElmerPost files. The vari-
able names in the result file are magnetic vector potential and magnetic flux density
1, 2 and 3.

By definition, magnetostatics deals with steady-state problems. However, the problem may be solved
nominally time-dependent. This merely means that it is solved for a set of given current densities.

11.2.1 Boundary Conditions
For the magnetostatics equation one can apply either Dirichlet or natural boundary conditions. In both cases,
one must check that the computational domain is extended far enough to avoid numerical errors.

The Dirichlet boundary condition for Aφ is

Aφ = Abφ. (11.2)

In practice, when Dirichlet condition is used, usually Abφ = 0. The keyword for the Dirichlet boundary
condition is Magnetic Vector Potential. If Dirichlet condition is not specified, natural boundary
condition is used.

11.3 Keywords
Constants

Permeability of Vacuum Real [4π10−7]

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Static Magnetic Field]
The name of the equation.
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Variable String [Magnetic Vector Potential]
The name of the variable.

Procedure File ["StatMagSolve" "StatMagSolver"]
The name of the file and subroutine.

Calculate Magnetic Flux Logical [True]
By this flag the computation of the magnetic flux is activated. The default is False.

Calculate Magnetic Flux Abs Logical [True]
Sometimes it is usefull to have the absolute magnetic flux available for nonlinear material laws.
Then this flag can be turned on. The default is False.

Calculate Joule Heating Logical [True]
In large computations the automatic computation of the Joule heating may be turned off by this
keyword. The default is False. The keyword is only applicable for the harmonic case. The
computation results to two additional variables. Joule Heating gives the absolute heating
and Joule Field the field that gives the heating when multiplied by the electric conductivity.
This may be needed if the electric conductivity is discontinuous making also the heating power
discontinuous.

Desired Heating Power Real
A constant that gives the desired total heating power in Watts. If the keyword is active the the
Joule Heating and Joule Field are multiplied by the ratio of the desired and computed
heating powers.

Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations k is small enough

||Akφ −Ak−1
φ || < ε||Akφ||,

where ε is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do. If neither the material
parameters nor the boundary conditions are functions of the solution the problem is linear, this
should be set to 1.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a factor
below unity is sometimes required to achive convergence of the nonlinear system. A factor above
unity might speed up the convergence. Relaxed variable is defined as follows:

A
′

φ = λAkφ + (1− λ)Ak−1
φ ,

where λ is the factor given with this keyword. The default value for the relaxation factor is unity.

Equation eq id
The equation section is used to define a set of equations for a body or set of bodies:

Static Magnetic Field Logical
If set to True, solve the magnetostatics equation.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Current Density Real
Specifies the azimuthal component of the current density. May be a positive or negative constant
or a function of a given variable.

Current Phase Angle Real
Specifies the phase angle of the current density in degrees. The default phase angle is zero.
Applies only to the time-harmonic case.
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Joule Heat Logical
If this flag is active the Heat equation will automatically include the computed Joule heating as
a heat source. Then it is assumed that Joule heating field is named φ is named Joule field.
If there is no heat equation this flag has no effect.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variable is active:

Magnetic Vector Potential Real
The azimuthal component of the magnetic vector potential.

Material mat id
The material section is used to give the material parameter values. Material parameter available for
the magnetostatics equation are.

Relative Permeability Real
The relative magnetic permeability µ is set with this keyword, defining the material relation
~B = µrµ0

~H . By default the relative magnetic permeability is one, but it may also be set
otherwise or be a function of a given variable, typically given by the relation µr = µr(| ~B|).
The value of the magnetic flux density | ~B| is available by the variable named. Absolute
Magnetic Flux.

Electric Conductivity Real
The electric conductivity defines the relation ~ = σ ~E. Only isotropic case is possible. The
parameter is needed only in the time-harmonic case.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary condition may be set for the vector potential. The one related to the the axisym-
metric magnetostatics problem is

Magnetic Vector Potential Real
The azimuthal component of the magnetic vector potential.
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Computation of Magnetic Fields with
Whitney Elements

Module name: MagnetoDynamics
Module subroutines: WhitneyAVSolver,WhitneyAVHarmonicSolver,MagnetoDynamicsCalcFields
Module authors: Juha Ruokolainen
Module status: Alpha
Document authors: Juha Ruokolainen, Peter Råback
Document created: Sep 9th 2010
Document edited: Sep 9th 2010

12.1 Introduction
This module solves the Maxwell equations in vector potential formulation (or the A-V formulation) and
(relatively)low frequency approximation using lowest order Whitney 1-forms (edge elements).

The WhitneyAVSolver and WhitneyAVHarmonicSolver compute the vector and scalar potential fields.
Then there is an additional solver called MagntoDynamicsCalcFields, which computes (nodal avarages) of
derivative fields:

Testing has been quite minimal, and bugs may persist. Any further testing and reporting is therefore
greatly appriciated.

12.2 Theory

The starting point is the transient equation for vector potential ~A that may be solved from the following
equations

σ
∂ ~A

∂t
+∇×

(
1
µ
∇× ~A

)
+ σ∇V = ~Js +∇× ~Ms − σ∇V s (12.1)
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with boundary conditions

At =
∫
e

(a+ bt) dS; a, b given (12.2)∮
AtdS =

∫
~B · ~n dΓ, ~B orBn given (12.3)

cAt +
1
µ
∇× ~A× ~n = h; c, h given (12.4)

V = v, v given (12.5)

dV − σ

(
∂ ~A

∂t
+∇V · ~n

)
= e d, e given (12.6)

Here σ is the electric conductivity, µ the permeablity, V the potential, ~J the current density, and ~M the
magnetization.

In steady-state these simplify to the following form

∇×
(

1
µ
∇× ~A

)
= ~Js +∇× ~Ms − σ∇V s (12.7)

with boundary conditions

At =
∫
e

(a+ bt) dS; a, b given (12.8)∮
AtdS =

∫
~B · ~n dΓ, ~B orBn given (12.9)

cAt +
1
µ
∇× ~A× ~n = h; c, h given (12.10)

The equations may also be solved in a harmonic mode with the ansats A(t, ~r) = A(~r) exp iωt,

iω ~A+∇×
(

1
µ
∇× ~A

)
+ σ∇V = ~Js +∇× ~Ms − σ∇V s (12.11)

with boundary conditions

At =
∫
e

(a+ bt) dS; a, b given (12.12)∮
AtdS =

∫
~B · ~n dΓ, ~B orBn given (12.13)

cAt +
1
µ
∇× ~A× ~n = h; c, h given (12.14)

V = v, v given (12.15)

dV − σ
(
iω ~A+∇V · ~n

)
= e d, e given (12.16)

12.3 Keywords

Keywords for WhitneyAVSolver
Here we list the keywords that are relevant to the steady-state and transient WhitneyAVSolver and also
common to the other solvers, i.e. material parameters, body forces, and boundary conditions.

Constants

Permittivity of Vacuum Real
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Material mat id
The following material parameters may be used by all the solvers in the module.

Electric Conductivity Real

Relative Permittivity Real
Relative permittivity of the material. It is internally multiplied by the permittivity of vacuum.
Also Permittivity may be used instead.

Relative Permeability Real
Relative permeablity of the material. It is internally multiplied by the permeability of vacuum,
the default of which is 4π10−7. Instead also Permeablity or its inverse, Reluctivity
may be given.

Solver solver id

Equation String WhitneySolver
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "MagnetoDynamics" "WhitneyAVSolver"
Name of the solver subroutine.

Variable String Potential
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.
The size is always one.

Element

Fix Input Current Density Logical

Use Tree Gauge Logical
The uniqueness of the vector potential needs to be ensured. The iterative solvers do that by their
nature and then the default is False. For direct solvers this is not the case, and hence then the
default is True.

Linear System Refactorize Logical

Linear System Preconditioning String
Here None may be give better performance than the usually used ILU preconditioners, since the
system of equations is actually overdetermined and no LU decomposition exists.

Linear System Iterative Method String
The iterative solvers BiCGStab or BiCGStabL may work well. If the matrix is symmetric which
is true except for time-dependent cases then CG could work as well.

Body Force bf id
In the body forces the user may give various volume sources.

Current Density i Real
The current density Ji where, i = 1, 2, 3.

Magnetization i Real
The magnetization Mi where, i = 1, 2, 3.

Electric Potential Real
The given electric potential.V

Boundary Condition bc id
Assuming that the primary variable is Potential there are two possible Dirichlet conditions. The
the first form is for electric potential in conductors. The second form is for tangential component of the
vector potential, and the third for vector potential given in x-y-z coordinate directions. To be usable
the third form needs the second form to be given. From the vector form the tangential component is
extracted and added to the given tangential component to give the final Dirichlet condition for At.
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Potential Real

Potential e Real

Potential 1 e Real

The following flux conditions may be given In addition Dirichlet BC for At may also be given by
giving normal component of the B field at the boundary – either normal component directly or com-
ponentwise.

Magnetic Flux Density i Real
Magnetic flux density where i = 1, 2, 3.

Magnetic Flux Density n Real
The normal component of the magnetic flux density.

Magnetic Field Strength i Real
The magnetic field strenth where i = 1, 2, 3.

Magnetic Transfer Coefficient Real

Electric Flux Real

Electric Transfer Coefficient Real

Keywords of WhitneyHarmonicAVSolver
The following are the additional keywords related to the harmonic solver. Typically these are optional values
given for the imaginary part of the parameters.

Solver solver id

Equation String WhitneyHarmonicSolver
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "MagnetoDynamics" "WhitneyHarmonicAVSolver"
Name of the solver subroutine.

Variable String P[Pot re:1 Pot im:1]
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.
The size is always two. Here the components are name so that real and imaginary part are easily
recognized.

Angular Frequency Real
The angular frequency ω = 2πf of the harmonic ansats.

Material mat id

Reluctivity Im Real

Electric Conductivity Im Real

Body Force bf id

Electric Potential Im Real

Boundary Condition bc id

Magnetic Flux Density Im i Real

Magnetic Flux Density Im n Real

Magnetic Field Strength Im i Real

Electric Flux Im Real
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Keywords of MagnetoDynamicsCalcFields
Solver solver id

In the solver section the computed fields are chosen. The Magnetic Flux Density is computed
always, others if requested. The size of the vector vector fields is 3, and for tensor fields 6. For
harmonic solution the sizes are doubled as there is the imaginary component.

Equation String CalcFields
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "MagnetoDynamics" "MagnetoDynamicsCalcFields"
Name of the solver subroutine.

Angular Frequency Real

Potential Variable String
Gives the name of the variable to operate upon, for example Potential.

Calculate Magnetic Field Strength Logical
If True a vector field Magnetic Field Strenth is computed.

Calculate Electric Field Logical
If True a vector field Electric Field is computed.

Calculate Current Density Logical
If True a vector field Current Density is computed.

Calculate Maxwell Stress Logical
If True a tensor field Maxwell Stress is computed.

Calculate Joule Heating Logical
If True a scalar field Joule Field is computed.

In addition to the fields two scalar values are computed always by the solver and saved in the list of
the Simulation section: Eddy current power and Magnetic Field Energy. The first one is
only relevant for time dependent and harmonic cases.
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Module subroutines: MagneticSolver
Module authors: Juha Ruokolainen
Document authors: Ville Savolainen, Antti Pursula
Document edited: May 24th 2005

13.1 Introduction
The magnetic induction equation describes interaction of a conducting liquid or gas with applied and induced
magnetic fields in the low-frequency domain. The induction equation for the magnetic flux density is always
coupled to the Navier-Stokes equation for the movement of the fluid. The magnetic field, in turn, causes the
Lorentz force in the Navier-Stokes equation. The fluid is typically hot, and the Navier-Stokes equation is
often coupled also to the heat equation.

The induction equation solver can also be used in a body without a moving fluid, i.e., when ~v = 0 and the
Navier-Stokes equation is not solved. In this case, the problem belongs to the field of magneto-quasistatics.

13.2 Theory
The magnetic induction equation may be derived from the Maxwell’s equations, with the displacement
current in Ampère’s law neglected, and the Ohm’s law for conducting fluids, ~ = σ( ~E + ~v × ~B). This
approximation for the behavior of electromagnetic fields in conducting, moving fluids is called magnetohy-
drodynamics.

The magnetic induction equation is given by

∂ ~B

∂t
+

1
σµ
∇×∇× ~B −∇× (~v × ~B) = 0, (13.1)

where σ is the electric conductivity and µ the magnetic permeability of the material. These must be specified
in the Material section by the keywords Electric Conductivity and Magnetic Permeability.

The force term induced by the magnetic field for the flow momentum equations is given by

~fm = ~× ~B, (13.2)

and the Joule heating in the heat equation by

hm =
1
σ
|~|2 , (13.3)

where ~ is the current density, calculated from the Ampère’s law ~ = ∇× ~H . These body forces are specified
by the keywords Lorentz Force and Joule Heat.
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The magnetic field can also be divided into external, or applied, and induced field, ~B = ~Be + ~Bi. The
external magnetic field ~Be is created by permanent magnets or currents outside the fluid. The external field
may be given to the induction equation solver either from a restart file, e.g., as calculated by the magnetostatic
solver, or defined via the sif file’s keywords Applied Magnetic Field 1, 2 and 3. If the restart file
is used, the components of ~Be are read from the variables named magnetic flux density 1, 2 and
3. If both methods are used, the two applied fields are summed together. It is assumed that the sources of the
external field are outside the flow region, i.e., ∇× ~Be = 0, and that the time derivative of the external field
can be ignored. The time derivative ∂ ~Be/∂t can, however, be specified directly by the keywords Magnetic
Bodyforce 1, 2 and 3. The induction equation solver gives the components of the induced magnetic field
~Bi.

Both transient and steady-state solvers for the magnetohydrodynamical system (induction, Navier-Stokes
and heat equations) are available. The magnetostatic and time-harmonic solvers for the external magnetic
field are described elsewhere in the Models Manual. In some cases it is also possible that the velocity is a
priori known, for example when studying induction in a rotating body. Then a user defined velocity can be
used instead of computing the velocity from Navier-Stokes equations.

Currently the induction equation can be solved in a cylindrically symmetric or a general three-dimensional
formulation.

13.2.1 Boundary Conditions
For the induction equation one can apply either Dirichlet or natural boundary conditions. In both cases, one
must check that the computational domain is extended far enough to avoid numerical errors. For this reason,
it is possible to solve the magneto-quasistatics problem in an adjacent body.

The Dirichlet boundary condition for a component of the induced magnetic field Bi (we have dropped
now the superscript i that marked the induced field) is

Bi = Bbi . (13.4)

Bbi can be a constant or a function of time, position or other variables. The keywords for the Dirichlet
boundary conditions are Magnetic Field 1, 2 and 3.

In the cylindrically symmetric case, the Dirichlet boundary condition for the azimuthal component Bφ
is in the same units as for the other two components, i.e., in T, and not for a contravariant component. On
the symmetry axis one has to set Br = 0 and Bφ = 0, and ∂Bz/∂r = 0 is applied implicitly.

If no Dirichlet condition is specified, natural boundary condition is applied.

13.3 Keywords
Solver solver id

Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Equation String [Magnetic Induction]
The name of the equation. It is also possible to use this solver as external procedure. Then the
name of the equation must not be the above (use e.g. Magnetic Field Solver). Also the
following four keywords have to be added with the values give here.

Procedure File "MagneticSolve" "MagneticSolver"

Variable String Magnetic Field

Variable DOFs Integer 3

Exported Variable 1 = -dofs 3 electric current
The above four keywords are to be given only when using the solver as an external procedure.

Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the relative change of the
norm of the field variable between two consecutive iterations k is small enough

|| ~Bk − ~Bk−1|| < ε|| ~Bk||,
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where ε is the value given with this keyword.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations the solver is allowed to do. If neither the material
parameters nor the boundary conditions are functions of the solution, the problem is linear, and
this should be set to 1.

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the nonlinear equation solver. Using a factor
below unity is sometimes required to achive convergence of the nonlinear system. A factor above
unity might speed up the convergence. Relaxed variable is defined as follows:

~B
′
= λ~Bk + (1− λ) ~Bk−1,

where λ is the factor given with this keyword. The default value for the relaxation factor is unity.

Steady State Convergence Tolerance Real
With this keyword a equation specific steady state or coupled system convergence tolerance is
given. All the active equation solvers must meet their own tolerances for their variable u, before
the whole system is deemed converged. The tolerance criterion is:

||ui − ui−1|| < ε||ui||,

where ε is the value given with this keyword.

Equation eq id
The equation section is used to define a set of equations for a body or set of bodies:

Magnetic Induction Logical
If set to True, solve the magnetic induction equation.

User Defined Velocity Logical
Controls whether the velocity is given by the user or computed by another solver. Default value
is False, which means that velocity solution of Navier-Stokes equations is used.

Navier-Stokes Logical
If set to True, solve also the Navier-Stokes equations. For magnetohydrodynamics, this is done,
except when the computational region for the magnetic field is extended beyond the fluid.

Heat Equation Logical
If set to True, solve also the heat equation.

Body Force bf id
The body force section may be used to give additional force terms for the equations.

Lorentz Force Logical
If set true, triggers the magnetic field force for the flow momentum equations.

Joule Heat Logical
If set true, the Joule heating is added in the heat equation.

Magnetic Bodyforce i Real
This keyword can be used to specify explicitly the time dependence of the external field, i.e., the
term−∂ ~Be/∂t. This is especially useful for time-harmonic fields, where the time derivative can
be calculated and expressed easily.

Initial Condition ic id
The initial condition section may be used to set initial values for the field variables. The following
variables are active:

Magnetic Field i Real
For each magnetic flux density component i= 1, 2, 3.
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Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set for the induction equation. They can be a constant or a function of a given variable.

Magnetic Permeability Real
The magnetic permeability is set with this keyword. For most fluids, the vacuum value for µ0

can be used, and the keyword set to 1.25664e-6.

Electric Conductivity Real
The value of the electric conductivity is set with the keyword. For example, for polythermal
flows the conductivity could be a function of the temperature.

Applied Magnetic Field i Real
This keyword can be used to specify the external field, or a part of it, and its contribution to the
term ∇× (~v × ~Be). The field may be a function of, e.g., time or position.

MHD Velocity i Real
The user defined velocity can be given with these keywords with i=1,2,3.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The ones related to
induction equation are

Magnetic Field i Real
Dirichlet boundary condition for each magnetic flux density component i= 1, 2, 3.
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Module author: Thomas Zwinger
Document author: Thomas Zwinger
Document created: April 13th 2005

14.1 Introduction
If dealing with electrolytic fluids constrained to small volumes, surface forces caused by electric surface
charges in combination with externally applied electrostatic fields are sufficient strong to affect the fluid
volume. If these effects are utilized to attenuate the fluid volume, we talk of Electrokinetics. The term
Electroosmotic Flow (EOF) is used in connection with the attenuation of a net charge inside a originally
neutral electrolyte caused by separation induced by a surface charge of a wall.

In most applications utilizing EOF, externally applied fields are sufficient small in order to justify ne-
glecting electric heating (Joule heating) inside the fluid volume. Nevertheless, certain applications, such as
High Voltage Capillary Electrophoresis (HV-CE) [2] or electrophoretic separation in polymer-based chips
[3], demand the consideration of this effect .

14.2 Theory
Chemical reactions between the contents of a liquid and the wall material may lead to a net charge of the
containment at the wall-liquid interface. If the liquid is an electrolyte (i.e., it contains free ions), ions of
opposite charge align along the wall creating the Stern layer. Adjacent to the Stern layer, a charge separation
- called the diffuse layer of the initially neutral electrolyte takes place. Due to the two layer structure the
whole are area of charge separation in the vicinity of a wall is called the Electric Double layer (EDL).

14.2.1 Electroosmotic slip velocity
Considering a symmetric electrolyte – i.e., the bulk ion density of ions with opposite valence numbers ±z
are equal n+

0 = n−0 = n0 – at a certain temperature, T , the typical width-scale of the EDL is given by the
Debye length [1]

λD =
(
εfε0 kb T0

2n0 z2 e20

)1/2

. (14.1)

Here e0 stands for the unit charge and kb denotes the Boltzmann constant. The relative permittivity of the
electrolyte and the permittivity of vacuum are given by εf and ε0, respectively.
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Figure 14.1: Structure of the EDL. The value of the induced potential, Φ at the Stern layer usually is referred
to as the zeta-potential, ζ
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The potential, Φ and the volume charge density, ρe, within the EDL are tightly coupled to each other by
the Poisson-Boltzmann equation (16.4) (see chapter 16). In order to exactly resolve the dynamics close to the
walls, (16.4) should be solved and the resulting specific electric force then be considered in the equation of
motion. Nevertheless, provided the typical length scales of the flow perpendicular to the containment walls,
H , strongly exceed those of the EDL – in other words, we obtain very small values for the non-dimensional
group L = λD/H � 1 – the dynamics of the electrolyte inside the EDL does not have to be resolved at
all. In this case simple considerations of a force balance between shear stress and electric force lead to a slip
condition for the fluid [4]. At the boundary, the tangential velocity is set to the Helmholtz-Smoluchowski
velocity

~utang. = ~uH−S =
~Etang.εfε0ζ

µf
, (14.2)

with µf standing for the local fluid viscosity. The zeta potential, ζ – a property depending on the electric
properties of the wall material as well as the electrolyte – usually is determined experimentally. From a
physical point of view it can be interpreted as the value of the solution obtained by (16.4) at the Stern layer.
The tangential component, ~Etang., of the external electric field, ~E, is evaluated from the outward pointing
surface normal ~n, applying the following relation

~Etang. = ~E −
(
~E · ~n

)
~n (14.3)

Alternatively, the resulting slip velocity may be related to the tangential field using the Electroosmotic Mo-
bility, µEOF

~uH−S = µEO
~Etang.. (14.4)

A combination of (14.2) and (14.4) leads to the following identity

µEO =
εfε0ζ

µf
. (14.5)

14.2.2 Joule Heating
Due to the small volume in microfluidic applications the additional heat produced by the external electric
field needs to be considered. With the local electric conductivity, σ, and the local volume density, ρ, of the
electrolyte the specific heat contribution by Joule heating from an external electric field, ~E, is given by

h = σ ~E · ~E/ρ. (14.6)

The expression above can be added as body force to the heat transfer equation (1.1).

14.3 Limitations
• The Helmholtz-Smoluchowski velocity should not be applied if the non-dimensional group L defined

in 14.2.1 is of unity order or larger. Then the potential- and charge density distribution as well as the
dynamics of the electrolyte inside the EDL has to be resolved.

• In a strict sense, the Helmholtz-Smoluchowski theory applies only to configurations where the normal-
component of the external field, ~E · ~n, is small. If dealing with electric insulating wall materials – as
it is usually the case in microfluidic applications – this condition is implicitly complied with.

• The assumption of a Newtonian fluid underlies the derivation of the Helmholtz-Smoluchowski veloc-
ity.

• The function helmholtz_smoluchowski can only be applied on boundaries of two-dimensional
domains, where the tangential direction is uniquely defined.

• The functions helmholtz_smoluchowski{1,2,3} cannot be applied with a number larger than
the dimension of the domain.
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14.4 Keywords

Keywords for helmholtz_smoluchowski
Constants

Permittivity Of Vacuum Real [8.8542e-12 C2/Nm2]
permittivity of vacuum, only needed if Helmholtz-Smoluchowski velocity is defined using ex-
pression (14.2)

Equation equation id

Electric Field String [computed, constant]
the option for how to evaluate the electric field should be set to one of these values.
If set to computed, the function will search for Electric Field {1,2,3} in the list
of solver variables. If set to constant, the function will search for Electric Field
{1,2,3} in the section Material material id, where material id is the id-number
associated with the material parameter list of the electrolyte

Material material id
If the Helmholtz-Smoluchowski velocity is defined using expression (14.2), then the following key-
words have to be provided in this section

Viscosity Real
viscosity of the electrolyte

Density Real
volumetric density of the electrolyte

Relative Permittivity Real
relative permittivity of the electrolyte

Boundary Condition bc id
In two-dimensional configurations the Helmholtz-Smoluchowski velocity directly can be assigned to
the tangential component of the velocity field

Normal Tangential Velocity Logical True

Velocity 2 = Variable Dummyargument
Real Procedure "Electrokinetics" "helmholtz_smoluchowski"
Sets tangential EO slip velocity

The argument Dummyargument can be any existing variable, since it is not used to evaluate the
velocity.
In three-dimensional configurations (and as an alternative also in two-dimensional), the velocity has
to be defined for each component

Normal Tangential Velocity Logical False

Velocity 1 = Variable Dummyargument
Real Procedure "Electrokinetics" "helmholtz_smoluchowski1"

Velocity 2 = Variable Dummyargument
Real Procedure "Electrokinetics" "helmholtz_smoluchowski2"

Velocity 3 = Variable Dummyargument
Real Procedure "Electrokinetics" "helmholtz_smoluchowski3"

The argument Dummyargument can be any existing variable, since it is not used to evaluate the
velocity.
If the Helmholtz-Smoluchowski velocity is defined using expression (14.2), then the zeta potential, ζ,
for the specific boundary region has to be defined
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Zeta Potential Real
Sets the zeta-potential for this boundary

Alternatively, the user can declare the EO-mobility, as explained in (14.5)

EO Mobility Real
Sets EO mobility for this boundary

Keywords for getJouleHeat
Equation equation id

Electric Field String [computed, constant]
the option for how to evaluate the electric field should be set to one of these values.
If set to computed, the function will search for Electric Field {1,2,3} in the list
of solver variables. If set to constant, the function will search for Electric Field
{1,2,3} in the section Material material id, where material id is the id-number
associated with the material parameter list of the electrolyte

Material material id

Electric Conductivity Real
electric conductivity of the electrolyte

Density Real
volumetric density of the electrolyte

Body Force bodyforce id

Heat Source = Variable Dummyargument
Real Procedure "Electrokinetics" "getJouleHeat"
adds specific heat source for HeatSolve. The argument Dummyargument can be any exist-
ing variable, since it is not used to evaluate the Joule heating
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Module name: StatElecBoundary
Module subroutines: StatElecBoundaryForce, StatElecBoundaryEnergy,
StatElecBoundaryCharge, StatElecBoundarySpring
Module status: Beta
Module authors: Peter Råback
Document authors: Peter Råback
Document created: 18 Feb 2002
Document edited: 2 Jan 2011

15.1 Introduction
In some applications the geometry is such that the 3D electrostatics may quite accurately be reduced to a 1D
problem. This is the case for nearly aligned planes. If the angle between the planes is ϕ (in radians) the error
of this approximation is roughly 2ϕ2/3. Therefore we may use an analytical solution that results directly
from the distance of the planes that are in different potential. The ideal model may be further developed by
taking into account perforated structures and dielectric layers.

15.2 Theory

It is assumed here that the electric field is stationary in the time-scale under study. The electric field ~E may
be expressed with an electric scalar potential φ,

~E = ∇φ. (15.1)

If there are no free charges, the scalar potential may be solved from

−∇ · ε∇φ = 0. (15.2)

When one dimension is much smaller than the other two we may assume that the field is one-dimensional.
Then the electric field resulting from potential difference Φ = ∆φ is

~E = E~n =
Φ
d
~n, (15.3)

where ~n is the unit normal and d(~r) is the height of the aperture. The energy density per unit area is now,

e =
1
2
εE2d =

εΦ2

2d
. (15.4)
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which corresponds to a induced charge density on the surface

q =
εΦ
d
. (15.5)

The force is obtained from the derivative of the energy,

f =
∂e

∂d
= −εΦ

2

2d2
, (15.6)

and the spring constant from the derivative of the force,

k =
∂f

∂d
=
εΦ2

d3
, (15.7)

The forces and spring constants are always aligned in the direction of the surface normal since any other
direction is incompatible with the original assumptions.

15.2.1 Electrostatics of perforated structures
If there are holes or other imperfections in the structure they may be homogenized over the whole area. By
computing the electric energy and force in the presence and absence of holes we get correction factors

eholes = αeideal (15.8)

and
fholes = βfideal (15.9)

The correction terms may be precalculated for a given geometry. However, if the relative change in the
aperture is large the correction terms should be modeled in some manner. we would also like to have similar
expressions for the spring constant

kholes = γkideal. (15.10)

If we assume that eholes is proportional to 1/d then the following relations may easily be derived.

β = α− α′d (15.11)

and
γ = α− α′d+

1
2
α′′d2, (15.12)

where the derivation is done respect to d.
Now we are only left with the problem of finding a nice functional approximation for α. The holes in

the membrane may be expressed using three dimensionless variables d̃ = d/r, b̃ = b/r and R̃ = R/r. Here
r is the hole radius, b the hole depth, d the aperture and R the distance between holes. When R̃ >> 1 and
b >> 1 the correction depends only on d̃.

Numerical computations suggest that the correction α(d̃) should approach unity as the distance d̃ ap-
proaches unity. On the other hand, it should approach 1− q for small values of d. Here q is the area fraction
of the holes.

Numerical calculations suggest that a second order rational polynom gives quite an accurate fit to the
computed results,

α(d) = 1− q
1

1 + a1d+ a2d2
. (15.13)

Fully analytical formulas are now more tedious but the values for β and γ are easily calculated using the
derivatives

α(d)′ = q
a1 + 2a2d

(1 + a1d+ a2d2)2
, (15.14)

and

α(d)′′ = 2q
a2 − 2a2

1 − 3a1a2d− 3a2
2d

2

(1 + a1d+ a2d2)3
. (15.15)

Least squares fitting to the numerical computations suggest that for cylindrical hole a1 = 4.2523, a2 =
0.4133, for a rectangular slot a1 = 2.3198, a2 = 0.2284 and for a square hole a1 = 3.8434, a2 = 0.3148.
When fitting the model the suggested constant term diverged up to 4 % from unity but the value one was
enforced anaway because it has the nice limiting value properties.
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15.2.2 Dielectric layer
If the conductor is covered with a dielectric layer we need to modify the equations. We assume that the
aperture consists of two materials with permittivities ε1 and ε2 and thiknesses d1 and d2. Because the flux
must be the same this means that the fields are

E1 =
Φ

d1 + ε1d2/ε2
(15.16)

and
E2 =

Φ
ε2d1/ε1 + d2

. (15.17)

Defining dx = d1 + ε1d2/ε2 these become

E1 =
Φ
dx

(15.18)

and
E2 =

ε1
ε2

Φ
dx
. (15.19)

The total energy density is then

e =
1
2
ε1Φ2 d1

d2
x

+
1
2
ε21
ε2

Φ2 d2

d2
x

=
ε1Φ2

2dx
. (15.20)

We assume that the resonator moves so that d1 changes and d2 remains constant. Then the force density is

f =
∂e

∂d1
=

∂e

∂dx

∂dx
∂d1

= −ε1Φ
2

2d2
x

. (15.21)

And similarly the spring constant density

k =
∂f

∂d1
=
ε1Φ2

d3
x

. (15.22)

These expressions may be used inside the integral instead of the constant field values to account for the
dielectric layer. It may be noted that the equations are exactly the same as for the case without the layer
except that the aperture d is replaced with the efficient aperture dx = d1 + ε1d2/ε2.

15.3 Implementation issues
This module is not a solver in itself. It only provides boundary conditions for real models. Natural models
to combine with these boundary conditions are models describing deformation in solid structures. For plates
the conditions are applied to the leading dimension while for generic 3D solids the conditions are applied
to the boundaries. Therefore the same subroutines may be applied to either boundary or to material section.
There is actually just one subroutine and the value it returns is defined by the name of the routine used to
call it.

These routines here were historically developed for MEMS modeling in a different setting and were
much later added to the open source publication as a lighter version.

15.4 Keywords
Constants

Permittivity Of Vacuum Real [8.8542d-12]
The default is given in SI units. In other units the constant should be changed approriately.

Boundary Condition bd id
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Procedure "StatElecBoundary" "StatElecBoundaryForce"
Function that returns the nodal force density.

Procedure "StatElecBoundary" "StatElecBoundaryCharge"
Function that returns the nodal charge density.

Procedure "StatElecBoundary" "StatElecBoundaryEnergy"
Function that returns the nodal energy density.

Procedure "StatElecBoundary" "StatElecBoundarySpring"
Function that returns the nodal spring density.

Gap Height Real
Distance on which the 1D electrostatic model is applied for. May depend on displacement, for
example, via MATC functions.

Potential Difference Real
Potential difference between the plates.

Relative Permittivity Real
Relative permittivity of the material between the plates.

Layer Thickness Real
There may be e non-conducting layer on top of the plate. If this keyword is not defined no layer
is assumed.

Layer Permittivity Real
Relative permittivity of the layer.

Hole Type String [slot / round / square]
The 1D electrostatics can account also for perforated sturctures if the depth of the hole is large
compared to the width of the hole. The different hole geometries are an infinite slot, a round hole
and a square hole.

Hole Size Real
The size of the hole is for a round hole the radius, for a square half the side and for a slot half of
the width.

Hole Fraction Real
The fraction of the holes on the surface.

Hole Depth Real
The depth of the holes i.e. also the thickness of the perforated plate.
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Poisson-Boltzmann Equation

Module name: PoissonBoltzmannSolve
Module subroutines: PoissonBoltzmannSolve
Module authors: Peter Råback
Document authors: Peter Råback
Document edited: 10.8.2004

16.1 Introduction
The macroscopic electromagnetic theory is governed by the Maxwell’s equations. In steady state the electric
field may usually be solved from a simple Poisson equation. However, if there are free charges in the domain
that are affected by the electric field the equation is no longer valid. Also the contribution of the free charges
need to be taken into consideration. If the electrostatic force is the only force affecting the distribution of
the electric charges then the potential in the steady-state is given by the Poisson-Boltzmann equation [1].
This equation may find its use in microfluidics and electrochemical applications. Note that if the charge
distribution is affected by the flow distribution of the carrier fluid this equation is no longer valid.

16.2 Theory
The electrostatic equation for the electric potential φ yields,

−∇ · ε∇φ = ρ, (16.1)

where ε is the permittivity of the medium and ρ is the charge density. Assuming that there is a fixed charge
density and both positive or negative moving ions the charge may be written as

ρ = ρ0 + e(z−n− + z+n+) (16.2)

where ρ0 is interior charge distribution of fixed positions of all solute charges, and e is the unit charge of a
electron, and z is the charge number of the positive or negative ions, and n is the corresponding ion density.

The electrochemical potential µ of the ions is defined by µ = ezφ+ kBT lnn, where the first term is the
electrostatic contribution and the second term comes from the entropy of the ions at the weak solution limit.
In equilibrium µi is constant over the whole domain and thus the ion density obeys a Boltzmann distribution,

n = n0e−ezφ/kBT (16.3)

where kB is the Boltzmann constant. Inserting this to the Poisson equation we obtain the Poisson-Boltzmann
equation that determines the potential field self-consistently,

−∇ · ε∇φ = ρ0 + ez−n−0 e−ez
−φ/kBT + ez+n+

0 e−ez
+φ/kBT . (16.4)
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A special case of the equation is obtained if the charge numbers and the concentrations are equal, z =
−z− = z+ and n0 = n−0 = n+

0 . Then the equation simplifies to

−∇ · ε∇φ = ρ0 − 2ezn0 sinh(ezφ/kBT ). (16.5)

The Poisson-Boltzmann equation is obviously nonlinear. We will show the iterative procedure only for this
case, the generic case is dealt similarly.

16.2.1 Iteration scheme
Defining α = 2ezn0 and β = ez/kBT the Poisson-Boltzmann equation for a symmetric electrolyte may be
written as

−∇ · ε∇φ = ρ0 − α sinh(βφ). (16.6)

The straight-forward iterative procedure treats only the left-hand-side of the equation in an implicit manner,

−∇ · ε∇φ(n+1) = ρ0 − α sinh(βφ(n)). (16.7)

The convergence of this scheme is, however, quite poor for many cases of practical interest. An improved
strategy should linearize also the right-hand-side.

Making a Taylor’s expansion we may approximate

sinh(βφ(n+1)) ≈ sinh(βφ(n)) + β cosh(βφ(n))(φ(n+1) − φ(n)) (16.8)

which results to the Newton iteration scheme[
−∇ · ε∇+ αβ cosh(βφ(n))

]
φ(n+1)

= ρ0 − α sinh(βφ(n)) + αβ cosh(βφ(n))φ(n). (16.9)

This scheme has good convergence properties and is usually the method of choice.

16.2.2 Boundary conditions
For electric potential either Dirichlet or Neumann boundary condition can be used. The Dirichlet boundary
condition gives the value of the potential on specified boundaries. The Neumann boundary condition is used
to give a flux condition on specified boundaries

σ = ε∇φ · ~n, (16.10)

where σ is the surface charge density.

16.2.3 Derived quanties
When the potential has been solved the electric field may be obtained as a postprocessing step from

~E = −∇φ. (16.11)

Charge density may be obtained as the right-hand-side of the Poisson equation,

ρ = ρ0 + ez−n−0 e−ez
−φ/kBT + ez+n+

0 e−ez
+φ/kBT . (16.12)

which in symmetric case yields,

ρ = ρ0 − 2ezn0 sinh(ezφ/kBT ). (16.13)

The energy density of the field ay be computed from

e =
1
2
~E · ~D =

1
2
ε(∇φ)2. (16.14)

However, in a more generic treatment also the connribution of the concentration should be included in the
expression of the energy.
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16.3 Notes on output control
The user can control which derived quantities (i.e. electric field and electric energy) are calculated.

There are also available two choices of visualization types for the derived quantities. The node values
can be calculated by taking the average of the derived values on neighboring elements (constant weights).
This results often in visually good images. The other possible choice is to weight the average with the size of
the elements, which is more accurate and should be used when some other variable depends on these derived
values. The latter choice is also the default.

16.4 Keywords
Constants

Permittivity Of Vacuum Real [8.8542e-12 C2/Nm2]

Boltzmann Constant Real [1.3807e-23 J/K]

Unit Charge Real [1.602e-19 C]

Equation equation id

Calculate Electric Energy Logical [False]
Controls whether the electric energy density is written in results files (default False).

Solver solver id

Equation String Poisson Boltzmann Solver

Variable String Potential
This may be of any name as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the potential.

Procedure File PoissonBoltzmannSolve PoissonBoltzmannSolve
Following are listed three keywords with default values for output control.

Nonlinear System Max Iterations Integer
The maximum number of nonlinear iterations.

Nonlinear System Convergence Tolerance Real
The relative error after which the iteration is terminated.

Nonlinear System Newton After Iterations Integer
The number of iterations after which Newton iteraration is turned on. The default is zero which
should usually be optimal.

Nonlinear System Newton After Tolerance Real
Optional parameter which gives the tolerance in error after which Newton iteraration is turned
on.

Calculate Electric Field Logical [True]

Calculate Electric Flux Logical [True]

Constant Weights Logical [True]
Used to turn constant weighting on for the results.

Material mat id

Relative Permittivity Real
The total permittivity is the product of the relative permittivity and the permittivity of vacuum.

Reference Temperature Real
This keyword is used to give the temperature occuring in the Boltzmann factor.
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Charge Number Integer
For symmetric cases the charge number. For unsymmetric cases one may give separately Positive
Charge Number and Negative Charge Number.

Ion Density Integer
For symmetric cases the original density of ions. For unsymmtric cases one may give separately
Positive Ion Density and Negative Ion Density.

An alternative set of parameters are also possible which are particularly suitable for testing purposes.
These are limited to the symmetric case where the potential normalized with the Zeta potential is
solved. Then the permittivities should be set to unity and only two variables are needed to define the
case.

Poisson Boltzmann Beta Real
This keyword gives the ratio of parameter β to the the Zeta potential.

Poisson Boltzmann Alpha Real
This keyword gives the parameter α

Body Force bodyforce id

Charge Density Real
The fixed charge distribution that is not affected by the electric field.

Boundary Condition bc id

Potential Real

Electric Flux BC Logical
Must be set to True if flux BC is used.

Surface Charge Real
Gives the surface charge for the Neumann boundary condition.

Bibliography
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Poisson-Boltzmann Theory. Elsevier Science, 1995.
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Module name: ReynoldsSolver
Module subroutines: ReynoldsSolver, ReynoldsHeatingSolver
Module authors: Peter Råback
Module status: Alpha
Document authors: Peter Råback
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Document edited: 24.10.2007

17.1 Introduction
The flow of fluids is in the continuum level usually described by the Navier-Stokes equations. For narrow
channels this approach is an overkill and usually not even necessary. Neglecting the inertial forces and
assuming fully developed laminar velocity profiles the flow equations may be reduced in dimension resulting
to the Reynolds equation.

The current implementation of the Reynolds equation is suitable for incompressible and weakly com-
pressible liquids as well as for isothermal and adiabatic ideal gases. The nonlinear terms for the compressible
fluids are accounted for. The fluid is assumed to be newtonian i.e. there is a direct connection between the
strain rate and stress. The equation may be solved either in steady state or in a transient mode.

There is an additional solver for postprocessing purposes that computes the local heat generation field
using the Galerkin method. It also computes the integrals over the force and heating fields over the whole
area.

17.2 Theory
The underlying assumption of the Reynolds equation is that the flow in the channel is fully developed and
has thus the Hagen-Poiseuille parabolic velocity profile. Accounting also for the movement of the planes
and leakage trough perforation holes the pressure may be solved from the equation

∇ ·
(
ρh3

12η
∇p
)
− Y ρp =

1
2
∇ · (ρh~vt) + h

∂ρ

∂t
+ ρvn, (17.1)

where ρ is the density, η is the viscosity, p is the pressure and h is the gap height, vt is the tangential velocity,
and vn is the velocity in direction of the surface normal [1, 5]. Holes may be homogenized using the flow
admittance Y which gives the ratio between pressure drop and mean flow velocity through the hole.

The exact form of the Reynolds equation depends on the material law for density, ρ(p). The absolute
value of density does not play any role and therefore we may study just the functional forms. For gases we
solve for the pressure variation from the reference pressure P0 rather than for the absolute pressure. The
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different functional forms for some idealized material laws are the following:

ρ ∝ (P0 + p) isothermal ideal gas
ρ ∝ (P0 + p)1/γ adiabatic ideal gas
ρ ∝ 1 incompressible
ρ ∝ ep/β weakly compressible.

Here γ = Cp/CV is the specific heat ratio and β the bulk modulus. In discretization of the equations it is
also useful to derive the functional dependencies of the density derivatives in respect to pressure,

ρp ∝ 1 isothermal ideal gas
ρp ∝ (1/γ)(P0 + p)1/γ−1 adiabatic ideal gas
ρp ∝ 0 incompressible
ρp ∝ ρ/β weakly compressible.

In order to improve convergence of the iteration of the nonlinear system some terms including differen-
tials of density may be expressed implicitly using pressure. This way equation (17.1) may be written in the
following form:

∇ ·
(
ρh3

12η
∇p
)
− Y ρp− ρph

∂p

∂t
− 1

2
ρph~vt · ∇p =

1
2
ρ∇ · (h~vt) + ρvn. (17.2)

The surface velocity ~v may also be given in normal cartesian coordinate system. Then the normal and
tangential components may easily be obtained from

vn = ~v · ~n
~vt = ~v − vn~n.

The normal velocity and gap height are naturally related by

vn =
∂h

∂t
. (17.3)

In transient case the user should make sure that this relationship is honored.

17.2.1 Flow admittances of simple geometries
The flow admittance, Y , occurring in the Reynolds equation may sometimes be solved analytically for
simple hole geometries from the steady-state Stokes equation. Generally Y depends on the history but
here we assume that it is presents the steady-state situation of the flow [2, 5]. This means that inertial and
compressibility effects are not accounted for. For cylindrical holes the admittance then yields,

Y =
D2

32ηb
, (17.4)

where D is the diameter of the holes and b is the length of the hole. In case of a narrow slot with width W
the admittance is given by

Y =
W 2

12bη
. (17.5)

17.2.2 Gas rarefaction effects
Generally the Reynolds equation could also be used to model nonnewtonian material laws. The current
implementation is limited to the special case of rarefied gases. The goodness of the continuum assumption
η depends on the Knudsen number, Kn, which is defined by

Kn =
λ

h
, (17.6)
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where λ is the mean free path of the molecules and h is the characteristic scale (here the gap height). In this
solver only the dependence with pressure is taken into account from the formula

λ =
1

1 + p/P0
λ0. (17.7)

When the Knudsen number is very small (Kn � 1) the gas may be considered as a continuous medium.
When the Knudsen number is in the transition regime (Kn ≈ 1) we may take the gas rarefaction effect
into account by an effective viscosity. This accounts for the slip conditions of the flow in the channel by
decreasing the viscosity value. An approximation given by Veijola [4] is

η =
η0

1 + 9.638K1.159
n

. (17.8)

It s relative accuracy is 5 % in the interval 0 < Kn < 880.

17.2.3 Boundary conditions for the Reynolds equation
The Reynolds equation may have different boundary conditions. The natural boundary condition that is
obtained by default is

∂p

∂n
= 0. (17.9)

This condition may be used at symmetry and closed boundaries.
If the aspect ratio of the resonator is large then the pressure variation at the open sides is small compared

to the values far from boundaries. Then may set Dirichlet boundary conditions (p = 0) for the pressure.
However, if the aspect ratio is relatively small the open side effects should be taken into account. The
pressure variation at the side is not exactly zero while also the open space has a flow resistance. The pressure
derivative at the boundary is approximated by

∂p

∂n
=
p

L
, (17.10)

where L is the effective added length of the open sides [3]. If gas rarefaction is not accounted for then
L = 0.8488h, otherwise

L = 0.8488(1.0 + 2.676K0.659
n )h. (17.11)

17.2.4 Postprocessing
When the equation has been solved the solution may be used to compute some data for postprocessing
purposes. The local volume flux in the lateral direction may be obtained from

~q = − h3

12η
∇p+ h~vt. (17.12)

The total force acting on the surface is

~F =
∫
A

(
p~n+

η

h
~vt

)
dA, (17.13)

where the first term is due to pressure driven flow and the second one due to sliding driven flow. Also the
heating effect may be computed. It consist of two parts: pressure driven flow and sliding flow. The local
form of this is

h =
h3

12η
|∇p|2 +

η

h
|~vt|2. (17.14)

Therefore the total heating power of the system is

Q =
∫
A

q dA. (17.15)

It should be noted that if the velocity field ~v is constant then the integral quantities should fulfill the condition
Q = ~F · ~v.

Note that the above implementation does not take into account the leakage through perforation holes nor
the compressibility effects of the fluids.
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17.3 Keywords
The module includes two different solvers. ReynoldsSolver solves the differential equation (17.2) while
ReynoldsHeatingSolver solves the equation (17.14) and computes the integrals. The second solver
only makes sense when the pressure field has already been computed with the first one. The second solver
uses the same material parameters as the first one.

Keywords for ReynoldsSolver
Solver solver id

Equation String ReynoldsSolver
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "ReynoldsSolver" "ReynoldsSolver"
Name of the solver subroutine.

Variable String FilmPressure
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the pressure. This should be 1 which is also the default value.

Procedure File "ReynoldsSolver" "ReynoldsSolver"
The name of the module and procedure. These are fixed.

Nonlinear System Convergence Tolerance Real
The transient equation is nonlinear if the relative displacement or pressure deviation is high.
The iteration is continued till the relative change in the norm falls under the value given by this
keyword.

Nonlinear System Max Iterations Integer
This parameter gives the maximum number of nonlinear iterations required in the solution. This
may be set higher than the typical number of iterations required as the iteration procedure should
rather be controlled by the convergence tolerance.

Material mat id

Gap Height Real
Height of the gap where the fluid is trapped. If the case is transient the user should herself make
sure that also this variable has the correct dependence on time.

Surface Velocity i Real
The velocity of the moving body may be given in either cartesian coordinates, or in ones that are
already separated to normal and tangential directions. In the first case the velocity components
are given with this keyword with i=1,2,3.

Tangent Velocity i Real
For setting the tangential velocity (i.e. sliding velocity) use this keyword with i=1,2,3.

Normal Velocity Real
Normal velocity is the velocity in the direction of the surface normal. Typically a negative value
means contraction.

Viscosity Real
Viscosity of the gas.

Viscosity Model String
The choices are newtonian and rarefied. The first one is also the default.

Compressibility Model String
The choices are incompressible, weakly compressible, isothermal ideal gas,
and adiabatic ideal gas.
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Reference Pressure Real
Reference pressure is required only for the ideal gas laws.

Specific Heat Ratio Real
This parameter is only required for adiabatic processes. For ideal monoatomic gases the ratio is
5/3. Only required for the adiabatic compressibility model.

Bulk Modulus Real
The parameter β in the weakly compressible material model.

Mean Free Path Real
If the viscosity model assumes rarefied gases the mean free path of the gas molecules in the
reference pressure must be given.

Flow Admittance Real
The steady-state flow admittance resulting from perforation, for example.

Boundary Condition bc id

FilmPressure Real
Sets the boundary conditions for the pressure. Usually the deviation from reference pressure is
zero at the boundaries.

Open Side Logical
The open end effect may be taken into account by setting this keyword True.

Keywords for ReynoldsPostprocess
This solver uses largely the same keywords that are already defined above. Only the Solver section has its
own keyword settings. This solvers should be active in the same bodies than the ReynoldsSolver.

Solver solver id

Equation String ReynoldsPostprocess
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "ReynoldsSolver" "ReynoldsSolver"
Name of the solver subroutine.

Reynolds Pressure Variable Name String
The name of the field that is assumed to provide the pressure field. The default is FilmPressure.
Note that the Variable of this equation need not to be defined since it is automatically set when
any of the field computation is requested.

Calculate Force Logical
Calculate the forces resulting from the pressure distribution computed with the Reynolds equa-
tion. The name of the field is obtained by adding the suffix Force.

Calculate Flux Logical
Calculate the fluxes resulting from the pressure distribution computed with the Reynolds equa-
tion. The name of the field is obtained by adding the suffix Flux.

Calculate Heating Logical
Calculate the heating efficiency from the pressure distribution computed with the Reynolds equa-
tion. The name of the field is obtained by adding the suffix Heating.

Calculate Force Dim Integer
By default the dimension of the force field is the mesh dimension plus one. Sometimes the pres-
sure lives on a 1D line of a 2D mesh. Then this keyword may be used to supress the dimension
of force to two.

Calculate Flux Dim Integer
As the previous keyword but for the flux.
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Richards equation for variably
saturated porous flow

Module name: RichardsSolver
Module subroutines: RichardsSolver, RichardsFlux
Module authors: Peter Råback
Module status: Alpha
Document authors: Serge-Étienne Parent and Peter Råback
Document created: 22.12.2010
Document edited: 22.12.2010

18.1 Introduction
Richards equation is a non-linear partial differential equation that represents the movement of fluids through
porous media.

The current implementation of the Richards equation uses normal Lagrange elements and therefore the
conservation of flux cannot be guaranteed. Dense meshes are required if the variations in the permeability
are high.

This version should not yet be considered a production version. However, it provides a suitable starting
case for more serious testing and further development.

18.2 Theory
The transient, incompressible, variably saturated, isotropic flow of water in non-swelling porous media is
expressed by the combination of Darcy’s law and the continuity equation, i.e. Richards equation. The
modern form of Darcy’s law can be written as

~q = −kw∇H (18.1)

where ~q is the unit flux, or Darcy velocity (L/T), kw is the fluid hydraulic conductivity of water (L/T), and H
is the total head (L). Since the velocity component of total head can be treated as negligible in porous media,
and air pressure can be considered as constant, total head can be expressed as H = p+ z where p is pressure
(F/L2) (note that p = −ψ = ua − uw), ψ is matric suction (F/L2), uw is the water pressure in pores (F/L2),
ua is the air pressure in pores (F/L2), z is elevation from a datum (depth coordinate of the geometry).

The continuity equation is expressed as

∂θ

∂t
= −∇ · ~q + Sw, (18.2)
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where θ is the volumetric water content (L/L), t is time (T), Sw is a source/sink term (L/T). Richards equation
may now be written as,

∂θ

∂t
= −∇ · (kw∇H) + Sw, (18.3)

since θ = f(ψ) and kw = f(ψ) the latter equation can be expressed using a pressure form,

∂θ

∂ψ

∂ψ

∂t
= −∇ · (kw∇H) + Sw, (18.4)

Or, developing total head,
∂θ

∂ψ

∂ψ

∂t
= −∇ · (kw∇(−ψ + z)) + Sw, (18.5)

The volumetric water content and the hydraulic conductivity are non-linear functions related to pres-
sure head. Both are commonly expressed by van Genuchten (1980)’s equations. Volumetric water content
function yields

θ(ψ) =

{
θs + θs−θr

(1+α
nvG
vG )mvG

, if ψ > 0
θs, if ψ < 0.

(18.6)

And the hydraulic conductivity function is

kw(ψ) =

{
kw,sat

(1−(αvGψ)nvGmvG (1+(αvGψ)nvG )mvG )2

(1+α
nvG
vG )−mvG/2 , if ψ > 0

kw,sat, if ψ < 0.
(18.7)

where θ is the volumetric water content (L/L), θr is the residual volumetric water content (L/L), θs is the sat-
urated volumetric water content, equal to the porosity (L/L), αvG, nvG, mvG are fitting parameters without
any units.

18.3 Implementation issues
The current implementation is carried out for the total head, H . This results to a weak form where the fluxes
occur naturally. The total head is intuitive since it gives directly the ground water level. Since the time
derivative of the elevation is zero, we may use the following equation to solve the total head,

θψ
∂H

∂t
+∇ · (kw∇H) = Sw. (18.8)

From the total head the matric suction will be automatically computed, ψ = z −H . This makes it possible
to have material laws that depend on it.

For transient problems the first term requires special attention. In the current version the sensitivity of θ
to ψ is computed from

θψ =

{
θ(ψ(ti))−θ(ψ(ti−1))
ψ(ti)−ψ(ti−1)

if |ψ(ti)− ψ(ti−1)| > ε
θ(ψ(ti))−θ(ψ(ti)−ε)

ε otherwise.
(18.9)

This way the effective sensitivity is smeared over the whole timestep, dt = ti − ti−1.
The values of the material parameters in the Richards equation vary a great deal depending on the sat-

uration level and type of medium. Therefore it is important to evaluate the water content and hydraulic
conductivity at the Gaussian integration points using the relevant formulas, rather than computing them at
nodal points and thereafter evaluating the values at the Gaussian integration points using a weighted sum
over the nodal values.

18.4 Keywords
The module includes two different solvers. RichardsSolver solves the primary differential equation
while RichardsFlux solves the resulting flux from the computed solution. The second solver only makes
sense when the pressure field has already been computed with the first one. The second solver uses the same
material parameters as the first one.
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Keywords for RichardsSolver
Solver solver id

Equation String RichardsSolver
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "RichardsSolver" "RichardsSolver"
Name of the solver subroutine.

Variable String TotalHead
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the pressure. This should be 1 which is also the default value.

Saturated Initial Guess Logical
Use saturated material parameters when computing the first equation for the total head.

Active Coordinate Integer
The coordinate corresponding to the dephth z in the Richards equation. By default the last
coordinate is the active one.

Calculate Matrix Suction Logical
Whether to compute the matric suction from the total head.

Bubbles Logical
Use stabilization by residual free bubbles.

Nonlinear System Convergence Tolerance Real
The Richards equation is always nonlinear and hence keywords related to the nonlinear system
control are needed. The iteration of the nonlinear system is continued till the relative change in
the norm falls under the value given by this keyword.

Nonlinear System Max Iterations Integer
This parameter gives the maximum number of nonlinear iterations required in the solution. This
may be set higher than the typical number of iterations required as the iteration procedure should
rather be controlled by the convergence tolerance.

Nonlinear System Relaxation Factor Real
Keyword related to the relaxation of the nonlinear system.

Material mat id

Porositity Model String
Currently the choices are van Genuchten and Default. The latter does not estimate the
functional forms on gaussian points and hence may have enferior accuracy. Also, currently the
computation of water content derivative is not supported for it limiting its usability to steady
state problems.

Saturated Hydraulic Conductivity Real

Saturated Water Content Real

Residual Water Content Real

van Genuchten Alpha Real

van Genuchten N Real

van Genuchten M Real
The parameters above are the material parameters of the van Genuchten material law that are
used to compute the hudraulic conductivity and water content.

Hydraulic Conductivity Real

Water Content Real
In case the porosity model is constant then the hydraulic conductivity and water content are
given with this keyword.
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Body Force bf id

Richards Source Real
The source term, Sw, of the equation.

Boundary Condition bc id

Richards Flux Real
The given flux at the boundary.

Keywords for RichardsPostprocess
This solver uses largely the same keywords that are already defined above. Only the Solver section has its
own keyword settings. This solvers should be active in the same bodies than the RichardsSolver.

Solver solver id

Equation String RichardsPostprocess
A describing name for the solver. This can be changes as long as it is used consistently.

Procedure File "RichardsSolver" "RichardsPostprocess"
Name of the solver subroutine.

Target Variable String
The name of the total head field solved by the Richards equation. The default name is Total
head.
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BEM Solver for Poisson Equation

Module name: PoissonBEM
Module subroutines: PoissonBEMSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: May 27th 2003

19.1 Introduction
This module solves the Laplace equation by boundary element method (BEM), where the differential equa-
tion is transformed to integral equation along the boundaries. On the boundaries either potential or normal
flux may be defined. A source term may be included (Poisson equation), but the source term remains a
volume integral.

19.2 Theory
The Poisson equation is mathematically described as

−∆Φ− f = 0, in Ω, (19.1)

where f is the given source.
In BEM we transform this equation to integral equation over boundaries. We start by multiplying the

equation by a weight function and integrating over the volume, and integrating by parts

−
∫

Ω

∆Φw dΩ =
∫

Ω

∇Φ · ∇w dΩ−
∫

Γ

∂Φ
∂n

w dΓ. (19.2)

Similarily we may write an equation reversing the roles of Φ and w

−
∫

Ω

∆wΦ dΩ =
∫

Ω

∇w · ∇Φ dΩ−
∫

Γ

∂w

∂n
Φ dΓ. (19.3)

Substracting the two equations we have

−
∫

Ω

∆Φw dΩ = −
∫

Ω

∆wΦ dΩ−
∫

Γ

∂Φ
∂n

w dΓ +
∫

Γ

∂w

∂n
Φ dΓ (19.4)

Next we choose the weight w as follows:

−∆w = δr(r′), (19.5)
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so that
−
∫

Ω

∆wΦ dΩ = Φ(r), (19.6)

The weight w chosen this way is the Green’s function for the Laplace operator, i.e.

w(r, r′) =
log(r − r′)

2π
in 2d , w(r, r′) =

1
4π(r − r′)

in 3d . (19.7)

Finally we add the source term, and we have the equation

Φ(r)−
∫

Γ

∂Φ
∂n

w dΓ +
∫

Γ

∂w

∂n
Φ dΓ−

∫
Ω

fw dΩ = 0. (19.8)

Only the source term is now integrated over the volume. This equation may now be discretized by standard
methods.

19.2.1 Boundary Conditions
Boundary conditions may be set for either potential

Φ = ΦΓ on Γ, (19.9)

or normal flux
− ∂Φ
∂n

= g on Γ. (19.10)

19.3 Keywords
Solver solver id

Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that the BEM discretization results to a full
linear system in contrast to FEM discretizations and the ILU preconditioning settings are not available.

Equation String [PoissonBEM]
The name of the equation.

Procedure File ["PoissonBEM" "PoissonBEMSolver"]
This keyword is used to give the Elmer solver the place where to search for the equation solver.

Variable String [Potential]
Give a name to the field variable.

Variable DOFs Integer [1]
This keyword must be present, and must be set to the value 1.

Exported Variable 1 String Flux
If this keyword is given, the output will include the normal flux at boundaries, the name must be
exactly as given.

Exported Variable 1 DOFs Integer [1]
This keyword must be present if Flux values are to be computed, and must be set to the value 1.

Equation eq id
The equation section is used to define a set of equations for a body or set of bodies:

PoissonBEM Logical
if set to True, solve the Poisson equation, the name of this parameter must match the Equation
setting in the Solver section.
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If the mesh has any volume elements with a body id that corresponds to a body where to the Poisson
equation is activated, the value of the potential is computed for these elements as a postprocessing
step. Note that the computation of potential is not a trivial task, so large number of volume elements
may result to long execution time.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Poisson
(BEM) equation are

Body Id Integer
Give body identification number for this boundary, used to reference body definitions in .sif
file. This parameter must be set so that the ElmerSolver knows at which boundaries to solve the
corresponding equation.

Potential Real
Known potential value at boundary.

Flux Real
Known normal flux at boundary.

Normal Target Body Integer
The direction of boundary normals are important for the success of the computation. They
should point consistently outward from the boundaries. This is accomplished either if the mesh
generator automatically orients the boundary elements consistently, or including in the mesh
the parent (volume) elements of the boundaries and using this keyword. The value -1 of this
parameter points to the side where there are no volume elements. If the parameter gets the value
of the body id of the volume elements, the normal will point to that direction.

Body Force bf id
The source term for the Poisson equation may be given here. The volume integral is computed on a
body with a volume mesh and the PoissonBEM equation set to true.

Source Real
The source term for the Poisson equation.
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BEM Solver for Helmholtz Equation

Module name: HelmholtzBEM
Module subroutines: HelmholtzBEMSolver
Module authors: Juha Ruokolainen
Document authors: Juha Ruokolainen
Document edited: May 27th 2003

20.1 Introduction
This module solves the Helmholtz equation by boundary element method (BEM), where the differential
equation is transformed to integral equation along the boundaries. On the boundaries either pressure or
normal flux may be defined.

20.2 Theory
The Helmholtz equation is mathematically described as

(k2 + ∆)Φ = 0, in Ω. (20.1)

In BEM we transform this equation to integral equation over boundaries. We start by multiplying the
equation by a weight function and integrating over the volume, and integrating by parts∫

Ω

(k2 + ∆Φ)w dΩ =
∫

Ω

k2wΦdΩ−
∫

Ω

∇Φ · ∇w dΩ +
∫

Γ

∂Φ
∂n

w dΓ. (20.2)

Similarily we may write an equation reversing the roles of Φ and w∫
Ω

(k2 + ∆)wΦ dΩ =
∫

Ω

k2wΦdΩ−
∫

Ω

∇w · ∇Φ dΩ +
∫

Γ

∂w

∂n
Φ dΓ. (20.3)

Substracting the two equations we have∫
Ω

(k2 + ∆)Φw dΩ =
∫

Ω

(k2 + ∆)wΦ dΩ−
∫

Γ

∂Φ
∂n

w dΓ +
∫

Γ

∂w

∂n
Φ dΓ (20.4)

Next we choose the weight w as follows:

(k2 + ∆)w = δr(r′), (20.5)

so that ∫
Ω

(k2 + ∆)wΦ dΩ = Φ(r), (20.6)
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The weight w chosen this way is the Green’s function for the Helmholtz operator, i.e.

w(r, r′) =
1
i4
H0(k(r − r′)) in 2d , w(r, r′) =

1
4π

exp−ik(r−r
′) in 3d , (20.7)

where H0 is the Hankel function.
Finally we have the equation

Φ(r)−
∫

Γ

∂Φ
∂n

w dΓ +
∫

Γ

∂w

∂n
Φ dΓ = 0. (20.8)

20.2.1 Boundary Conditions
Boundary conditions may be set for either pressure

Φ = ΦΓ on Γ, (20.9)

or normal flux
− ∂Φ
∂n

= g on Γ. (20.10)

20.3 Keywords
Simulation

Angular Frequency Real
Give the value of the angular frequency for the simulation.

Solver solver id
Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere. Note also that the BEM discretization results to a full
linear system in contrast to FEM discretizations and the ILU preconditioning settings are not available.

Equation String [HelmholtzBEM]
The name of the equation.

Procedure File ["HelmholtzBEM" "HelmholtzBEMSolver"]
This keyword is used to give the Elmer solver the place where to search for the equation solver.

Variable String [Pressure]
Give a name to the field variable.

Variable DOFs Integer [2]
This keyword must be present, and must be set to the value 2.

Exported Variable 1 String Flux
If this keyword is given, the output will include the normal flux at boundaries, the name must be
exactly as given.

Exported Variable 1 DOFs Integer [2]
This keyword must be present if Flux values are to be computed, and must be set to the value 2.

Equation eq id
The equation section is used to define a set of equations for a body or set of bodies:

HelmholtzBEM Logical
if set to True, solve the Helmholtz equation, the name of this parameter must match the
Equation setting in the Solver section.
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If the mesh has any volume elements with a body id that corresponds to a body where to the Helmholtz
equation is activated, the value of the pressure is computed for these elements as a postprocessing step.
Note that the computation of potential is not a trivial task, so large number of volume elements may
result to long execution time.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to
Helmholtz (BEM) equation are

Body Id Integer
Give body identification number for this boundary, used to reference body definitions in .sif
file. This parameter must be set so that the ElmerSolver knows at which boundaries to solve the
corresponding equation.

Pressure 1 Real
Known real part of pressure at boundary.

Pressure 2 Real
Known imaginary part of pressure at boundary.

Flux 1 Real
Known real part of normal flux at boundary.

Flux 2 Real
Known real part of normal flux at boundary.

Normal Target Body Integer
The direction of boundary normals are important for the success of the computation. They
should point consistently outward from the boundaries. This is accomplished either if the mesh
generator automatically orients the boundary elements consistently, or including in the mesh
the parent (volume) elements of the boundaries and using this keyword. The value -1 of this
parameter points to the side where there are no volume elements. If the parameter gets the value
of the body id of the volume elements, the normal will point to that direction.
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Kinematic Free Surface Equation with
Limiters

Module name: FreeSurfaceSolver
Module subroutines: FreeSurfaceSolver
Module authors: Thomas Zwinger, Peter Råback, Juha Ruokolainen, Mikko Lyly
Document authors: Thomas Zwinger
Document edited: November 12th 2010

21.1 Introduction
Flows with a free surface are to be found in geophysical as well as technical applications. On large scale
flows the free surface usually is governed by a kinematic boundary condition given as a partial differential
equation. This equation then is solved on the specific boundary in combination with the (Navier)-Stokes
equation and the mesh update solver.

21.2 Theory
The implicit equation describing the free surface is given by

F (~x, t) = z − h(x, y, t), (21.1)

with the explicit position of the free surface h(x, y, t). Mass conservation implies that, with respect to the
velocity of the surface, ~um, F has to define a substantial surface, i.e.,

∂F

∂t
+ ~um∇F = 0. (21.2)

The net volume flux through the free surface then is given by the projection of the difference between the
fluid velocity at the free surface, ~u and the velocity of the free surface with respect to the surface normal

a⊥ = (~um − ~u) · ~n. (21.3)

In Geophysical context (e.g., Glaciology), a⊥ often is referred to as the net accumulation. With the surface
unit normal defined as

~n =
∇F
‖∇F‖

, (21.4)

this leads to
∂F

∂t
+ ~u∇F = −‖∇F‖a⊥. (21.5)
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Using the definition in (21.1), (21.5) can be rewritten in its explicit form

∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y
− w =

[
1 +

(
∂h

∂x

)2

+
(
∂h

∂y

)2
]1/2

a⊥, (21.6)

with the components of fluid velocity vector at the free surface given as ~u = (u, v, w)T. The variational
formulation of (21.6) reads as∫

Ω

(
∂h

∂t
+ u

∂h

∂x
+ v

∂h

∂y

)
ϕdV =

∫
Ω

w +

[
1 +

(
∂h

∂x

)2

+
(
∂h

∂y

)2
]1/2

a⊥

ϕdV, (21.7)

where the occurrence of h in the right hand side is inserted from the previous time-step/non-linear iteration,
hence linearizing the equation. In case of a horizontally moving mesh, the contribution in form of an arbitrary
Lagrangian-Eulerian (ALE) formulation has to be included (by default is is omitted). With the horizontal
mesh velocity components, umesh and vmesh, the ALE version of equation (21.6) then reads

∂h

∂t
+ (u− umesh)

∂h

∂x
+ (v − vmesh)

∂h

∂y
− w =

[
1 +

(
∂h

∂x

)2

+
(
∂h

∂y

)2
]1/2

a⊥, (21.8)

21.2.1 Limiters
In certain cases the free surface is constrained by an upper hmax(x, y, t) and/or a lower hmin(x, y, t) limit.
For instance, the free surface of a fluid contained in a vessel cannot penetrate the vessel’s walls. This adds
the constraint

hmin ≤ h ≤ hmax (21.9)

to (21.7) converting the variational formulation into a variational inequality. In order to obtain a with (21.9)
consistent solution a method using Dirichlet constraints within the domain is applied. The exact procedure
is the following:

1. construct the linear system: AAA~h = ~f , with the system matrix AAA and the solution vector ~h on the
left-hand side and the force vector ~f on the right hand side

2. set nodes as active if (21.9) is violated

3. for active nodes the matrix and force vector are manipulated such that effectively a Dirichlet condition
h = hmax/min is applied

4. the manipulated system is solved: ÃAA~̃h = ~̃
f

5. a residual is obtained from the un-manipulated system: ~R = AAA
~̃
h− ~f

6. an active node is reset if the residual is R < 0 (for lower limit) and R > 0 (for upper limit)

The whole algorithm is iterated (within the non-linear iteration loop) until the limit given in Nonlinear
System Convergence Tolerance is reached. In the converged solution the residual represents the
needed accumulation/volume flux (on matrix level, hence not in physical units) needed in order to obtain the
limited solution. Consequently, the system not necessarily is volume conserving if the Dirichlet method is
applied. As the solver in principle works with second order elements, the limitation procedure only converges
with only the between elements shared nodes being subject to the algorithm described in this section. This
is done automatically by the code.

21.3 Constraints
The code only works in Cartesian coordinates and – by the nature of the differential equation – effectively
converges only in a transient simulation. Although, technically, it also can be run in steady state simulations.
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21.4 Keywords
Solver solver id

Equation String "Free Surface Limited"

Variable String Varname
The change in the free surface coordinate. This may be of any name as far as it is used consis-
tently also elsewhere, as Varname is used as a preceding keyword for the exported variable of
the residual, as well as for the accumulation

Variable DOFs Integer 1
Degrees of freedom for the free surface coordinate.

Procedure File "FreeSurfaceSolver" "FreeSurfaceSolver"
The following four keywords are used for output control.

Velocity Implicitness Real
Determines the level of implicitness in the velocity field. Values shall be in the interval cv ∈
[0, 1]. The velocity is interpolated between the current and the previous time level such that
u = (1− cv)un−1 + cv u

n. Thus, unity corresponds to complete implicitness (default).

Maximum Displacement Real
This limits the maximal local displacement in a time-step. If exceeded, relaxation automatically
is applied in order to limit the displacement.

Apply Dirichlet Logical
Takes the variational inequality method (here referred to as Dirichlet method) into use. The user
should be aware that if the method is applied (value True) this implies setting the Nonlinear
Max Iterations to a value large enough for the method to converge. The default value is
False.

ALE Formulation Logical
If set to True, the mesh horizontal mesh velocity is taken into account in the convection term.
The default value is False.

Relaxation Factor Real
The changes in the free surface may be relaxed. The default is no relaxation or value 1.0

Stabilization Method String
Sets stabilization method. Either Stabilized or Bubbles can be set.

Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the maximum change in
the free surface coordinate is small enough

max ||dR/(R−R0)|| < ε

where ε is the value given with this keyword.

Exported Variable 1 String
The residual, which is the essential property in solving the variational inequality has to be given
as an exported variable. The name is fixed by the variable name Varname given in the Solver
section plus Residual. For instance, if the variable is named FreeSurf, the exported vari-
able is expected to be FreeSurf Residual.

Exported Variable 1 DOFs Integer
As the free surface is a scalar, the value has to be set to 1.

Use Linear Elements Logical
If set to true, forces usage of linear element types despite the order of the mesh. Mind, that in
case of limited elements, by default linear elements are used. The default value is False.

Equation eq id
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Convection String
The type of convection to be used: None (default), Computed, Constant. In the last case,
the keyword Convection Velocity is expected to be found in the Material section.

Body Force bf id

Varname Accumulation Real
sets the value for the normal accumulation/volume flux, a⊥ for the variable name varname. If
this keyword is set, the following keyword Varname Accumulation Flux is ignored (as
those are excluding)

Varname Accumulation Flux i Real
sets the accumulation flux in Cartesian components (i = 1,2,3 in 3-dimensional problem). The
resulting vertical flux then is evaluated using the surface normal.

Initial Condition ic id

Varname Real
Initiation of the free surface variable (sets initial shape of surface)

Boundary Condition bc id

Body ID Integer
usually, the solver is run on a lower dimensional boundary of the model. Then a separate body-
id has to be defined and all component of the solver (Equation, Body Force, Equation,
Initial Condition and Material) defined accordingly.

Varname Real
Dirichlet condition of the free surface variable (makes really sense only on dimension - 2 bound-
aries, e.g. lines in case of a three dimensional run)

Mesh Update i Real
usually, the free surface evolution should have a feedback on the domain’s geometry. This usually
is achieved by running the MeshUpdate Solver and linking the variable of the free surface with
the corresponding component of the Mesh Update (i=1,2,3). For instance, in a 3-dimensional
case with the variable name FreeSurf this could read as: Mesh Update 3 = Equals
FreeSurf
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Free Surface with Constant Flux

Module name: FreeSurfaceReduced
Module subroutines: FreeSurfaceReduced
Module authors: Peter Råback
Document authors: Peter Råback
Document edited: August 5th 2002

22.1 Introduction
The determination of free surface is often an essential part of solving a fluid dynamics problem. Usually the
surface is found by solving a free surface equation resulting from force balance, or by finding the free surface
from zero flux condition. In some extreme cases both of these methods were found to fail and therefore an
alternative approach was taken. The method can only be applied to stationary 2D or axisymmetric flows
where the total flux is conserved. This is the case, for example, in many coating and drawing processes.

22.2 Theory
The determination of the free surface takes use of the conservation of mass. If the flow is stationary the mass
flux through all planes cutting the flow must be same. In the following we concentrate on the axisymmetric
case which has more applications than the 2D case.

In the axisymmetric case the mass flux is obtained from

f(R, z) =
∫ R

R0

(~u · ~n) rds. (22.1)

The free surface is set by finding a surface profile R(z) such that the integral is constant for all nodes on the
surface, or

f(R, zj) = f(R1, z1) ∀j ∈ [1,M ]. (22.2)

Note that the factor 2π has been consistently omitted since it has no bearing to the shape of the free surface.
The subroutine uses simple heuristics to determine the direction of the flow on the free surface. The first

upwind node z1 on the free surface is assumed to be fixed and the corresponding flux is f1. The new radius
is set approximately by assuming that the added or removed flow has the same velocity as the velocity on
the surface. Then the corrected radius is found from

unR
(m) dRm = f(R(m), z)− f(R1, z1) (22.3)

or

R(m+1) = R(m) +
f(R(m), z)− f(R1, z1)

unR(m)
. (22.4)
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After the new profile is being found the element nodes are moved to the new positions. The nodes that are
not on the surface may be mapped in many different ways. The straight-forward strategy is to use linear 1D
mapping. Also more generic 2D mapping may be used.

The free surface and the fluid flow must be consistent and therefore the system must be solved iteratively.
When convergence of the coupled system has been obtained the suggested dR vanishes and the free surface
solver does not affect the solution.

Sometimes the free surface solver overshoots and therefore it may be necessary to use relaxation to
suppress the large changes of the solution.

Note that the free surface solver is simple based on mass conservation. No forces are applied on the free
surface. If surface tension needs to be taken into account it may be done while solving the Navier-Stoke
equation.

22.3 Applicable cases and limitations
The method has some limitations which are inherent of the method:

• Limited to steady-state simulations.

• Limited to 2D and axisymmetric cases.

• If there is back-flow within the free surface flow the correctness of the solution is not guaranteed.

Some limitations result from the current implementation:

• The free surface must be oriented so that the flow is on its negative side.

• There may be several free surfaces of this type but they must be directed the same way.

• The line integral from R0 to R may cause some difficulties in unstructured meshes. Therefore struc-
tured meshes are favored.

• At the moment density is assumed to be constant and therefore only incompressible fluids may be
considered.

22.4 Keywords
Solver solver id

Equation String "Free Surface Reduced"

Variable String dx
The change in the free surface coordinate. This may be of any name as far as it is used consis-
tently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the free surface coordinate.

Procedure File "FreeSurfaceReduced" "FreeSurfaceReduced"
The following four keywords are used for output control.

Perform Mapping Logical
If this keyword is True the coordinate mapping is done locally by using linear 1D mapping.
This is also the default. Also 2D mapping is possible by using a separate mesh update solver.
Then the keyword should be set to False.

Nonlinear System Relaxation Factor Real
The changes in the free surface may be relaxed. The default is no relaxation or value 1.0
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Nonlinear System Convergence Tolerance Real
This keyword gives a criterion to terminate the nonlinear iteration after the maximum change in
the free surface coordinate is small enough

max ||dR/(R−R0)|| < ε

where ε is the value given with this keyword.

Boundary Condition bc id

Free Surface Reduced Logical
Must be set to True for the free surface when the solver is used. The boundary must be simply
continuous.

Free Surface Number Integer
If more than one free surface of the reduced type is present simultaneously they must somehow
be separated. This keyword is for that purpose. The surfaces should be ordered from 1 to the
number or free surfaces. Value 1 is also the default if the surface is active. Note that free surfaces
with different numbers should be aligned the same way and should not touch each other.

Free Surface Bottom Logical
If this flag is free it sets the lower boundaries of integration when solving for the free surface.
Note that this surface should not touch any of the free surfaces. A free surface is automatically a
lower boundary for another free surface.

If mapping is not performed within the solver also boundary conditions for the mapping are required.
Surface tension may be taken into account while solving the Navier-Stokes equation. The proper
keywords for activating the surface tension are explained in the manual of the Navier-Stokes solver.
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Free surface with streamlines

Module name: StructureFlowLine
Module subroutines: StructureFlowLine
Module authors: Peter Råback
Document authors: Peter Råback
Document created: 22.9.2010
Document edited: 23.9.2010

23.1 Introduction
There are many different kinds of free surface problems. It is difficult to create a generic algorithm that
would be optimal for all problems. Therefore specific cases may need specific solvers. This solver is
intended for steady-state drawing and pulling problems where the mesh is structured in the direction of the
forced flow. Then it is possible to follow the streamlines of the flow and map element edges with the flow.
When converged the streamlines will then coinside with the element edges providing an optimal solution for
the problem.

The solver can be used by itself as a free surface solver, or together with a mesh adaptation solver so that
the current solver only gives the suggested displacement at the boundaries.

23.2 Theory
Assume that we want to map the coordinates ~ri so that they coninside with the streamlines. Then

~ri+1 = ~ri + ~va
|dri,k|
|va,k|

(23.1)

where k is the active coordinate direction of the pulling or drawing process. The average velocity may be
computed from

~va =
1
2
(~vi + ~v(~ri + 1)) (23.2)

or from

~va = ~v

(
1
2
(~ri + ~ri+1)

)
. (23.3)

When ~ri+1 is updated the information may be used to derive on improved estimate of ~va. This requires
as an operation that the velocity must be evaluated within an arbitrary position. For this purpose an octree
structure for the elements is used to speedup the search. Typically even one corrector step will improve the
results significantly.
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23.3 Keywords
Solver solver id

Equation String [StructuredFlowLine]
The name of the equation.

Procedure File "StructuredFlowLine" "StructuredFlowLine"
The name of the procedure.

Velocity Variable Name String
Name of the variable used to define the streamlines.

Active Coordinate Integer
The drawing direction i.e. 1, 2 or 3.

Dot Product Tolerance Real
When determining the structure of the mesh in the active direction this tolerance is used to decide
that an element edge is aligned with the direction of the action.

Displacement Mode Logical
The values may be either used either directly, or saved to a field. If this flag is set True the
coordinate values will be changed directly. The default is False.

Hard Displacement Name String
The name of the field for the suggested displacement. These values may be used in a soft way in
mesh deformations in order to avoid singulaties that often appear at corners.

True Flow Line Iterations Logical
When computing the drawing shapes the first iterations lead to larger displacements and set
higher demans to the numerical methods. Close to convergence the velocity may be more ac-
curately defined at the existing flow line. This flag determines the number of the more costly
iterations. The default is zero.

Averaging Order Integer
Order of iterations in evaluating the new position. Default is one.

Averaging Method Integer
Whether to use velocity at the average point (1), or average of the velocity (2).

Nonlinear System Relaxation Factor Real
Relaxation may be used to relax already the suggested displacement field.

Boundary Condition bc id

Flow Line Logical
By defining this keyword the solver is applied only to the those boundary nodes where the flag
is active. This reduces the computational time required.

Body Force bf id

Flow Line Logical
By defining this keyword the solver is applied only to the those bulk nodes nodes where the flag
is active.
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Transient Phase Change Solver

Module name: PhaseChangeSolve
Module subroutines: TransientPhaseChange
Module authors: Peter Råback
Document authors: Peter Råback
Document created: 22.10.2004
Document edited: 14.12.2009

24.1 Introduction
There are many phenomena that involve an interface between liquid and solid phase. Such problems occur,
for example, in crystal growth and casting processes. This subroutine defines the position of the phase
change boundary in a transient case using an Lagrangian approach.

For Lagrangian steady state phase change algorithm look at the next chapter. For Eulerian phase change
algorithm look at the enthalpy method in the heat solver. Generally Lagrangian approaches are more accurate
but their use is limited to rather smooth interfaces with moderate displacements.

24.2 Theory

General theory
The phase change from solid to liquid occurs at the melting point Tm. At the boundary the temperatures of
the liquid and solid are therefore equal to that. The phase change results to a change in the internal energy
known as the latent heat L.

The latent heat makes the diffusive heat flux over the boundary discontinuous and results to the so called
Stefan condition

Lρ~v · ~n = (κs∇Ts − κl∇Tl) · ~n, (24.1)

where ~n is the normal of the phase change boundary, ~v is the velocity of the phase change boundary, ρ is the
density of the solid and Ts and Tl are the temperatures of the solid and liquid phases, and κs and κl are the
thermal conductivities, respectively.

In steady state pulling and drawing processes the velocity of the phase change boundary should be equal
to pull velocity, ~v = ~V (bulk velocity of the solid phase).

Transient algorithm
In transient phase change problems the interface temperature is set to be at the melting point when solving
the heat equation. From the solution a heat flux is then obtained from

~q = κs∇Ts − κl∇Tl. (24.2)
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Now this heat flux is assumed to be used for the melting of the solid phase into liquid phase. Assuming
that the phase change boundary is mapped to the new position moving it only in the y-direction we get from
equation (24.1) the velocity in the y-direction,

ρLny(vy −Dv∇2vy) = ~q · ~n. (24.3)

Here an artificial diffusion Dv has been added since the algorithm otherwise is prone to numerical oscilla-
tions. In order for the diffusion not to affect the results significantly it must fulfil the condition Dv << h2

where h is the size of the 1D elements.
The corresponding displacement is easily obtained from multiplication uy = vy dt, where dt is the

timestep. However, in the current formulation may also be done using the Galerkin method to include the
possibility of an additional diffusion factor. Therefore the equation is of the form,

∂uy
∂t

−Du∇2uy = vy. (24.4)

In continuous processes the triple point may be used to define the pull velocity so that at the point the
solution of the equation vanishes. In case the pull occurs in the y-direction this means that Vy = vy .

The algorithm is ideally suited for relatively small time-steps where the change in the position is small
compared to the other dimensions of the problem. Otherwise the transient algorithm may result to spurious
oscillations. However, often the timestep size is most severely limited by the flow computations. Therefore
it may be possible to boost the convergence towards the true operation regime by multiplying the suggested
change by a constant factor.

24.3 Applicable cases and limitations
The method has some limitations which are described below

• Phase change surface must be nearly aligned with either of the main axis. To be more precise the
boundary must in all instances be such that for each coordinate there is only one point on the boundary.

• Applicable in 2D and 3D cases

• Melting point and density over the interface may vary is assumed to be constant over the whole inter-
face.

• The convection velocity of the interface should be constant.

• It should be noted that the solver only gives the position of the phase change boundary. In order to
modify the whole geometry a mesh update solver must be applied.

24.4 Keywords
Solver solver id

Equation String "Transient Phase Change"

Procedure File "TransientPhaseChange" "TransientPhaseChange"
The subroutine that performs the phase change analysis.

Variable String PhaseSurface
The variable for the PhaseSurface coordinate. This may be of any name as far as it is used
consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the free surface coordinate, the default.

Phase Change Variable String
By default the phase change analysis uses Temperature as the active variable. The analysis
may be performed also to any other scalar variable given by this keyword
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Use Nodal Loads Logical
The most accurate method of computing the heat fluxes is to use the residual of the matrix equa-
tion. This is activated by the keyword Calculate Loads in the heat equation and it results
to a variable named Temperature Loads that may be used directly to give the melting heat
over the interface nodes.

Normal Variable String
The normal of an element may be computed directly from each element segment, or it may be
computed using Galerkin method in the NormalSolver. In the latter case the name of the
normal field variable may be given by this keyword.

Triple Point Fixed Logical
This keyword enforces the triple point to be fixed. Depending on the type of algorithm this may
mean different things. In the transient algorithm this means that the interface velocity is tuned so
that the velocity at the triple point is zero. Only applicable in 2D where the triple point is unique.

Pull Rate Control Logical
The pull rate may be set so that the triple point remains at a fixed position. The feature is activated
setting this keyword True.

Velocity Relaxation Factor Real
The relaxation factor for the interface velocity field.

Velocity Smoothing Factor Real
The velocity diffusion factor of the interface, Dv .

Transient Speedup Real
The factor at which the change in the boundary position is changed in the transient case. This
may be used to speedup the transient convergence.

Nonlinear System Max Iterations Integer
In case the pull-rate control is used the phase change algorithm may have to be solved several
times in order to define the consistent pull-rate. This keyword gives the maximum number of
iterations.

Nonlinear System Convergence Tolerance Real
The tolerance for terminating the transient algorithm.

Body body id

Solid Logical

Liquid Logical
The solver requires information on which of the materials in the system is solid and which is
liquid. Currently the solver assumes that both the liquid and solid is uniquely defined.

Material mat id

Heat Conductivity Real
In a transient case the heat conductivities of the both materials must be given.

Density Real
Density is needed to obtain the latent heat in units of energy per volume.

Latent Heat Real
The latent heat is the specific internal energy related to the phase change. The latent heat may
also be a variable.

Convection Velocity i Real
For the transient algorithm the pull velocity of the boundary may be given with this keyword.

Boundary Condition bc id
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Body Id Integer
The phase change solver operates usually on a boundary of a two-dimensional domain. Techni-
cally the equation on the boundary is treated in a normal finite element manner and therefore the
boundary must be defined to be the body where the equation is to be solved. Usually this would
be the next free integer in the list of bodies.

Phase Change Side Logical
This keyword is used for the boundaries that define the edges of the phase change interface. The
diffusive operators used for smoothing create a weak term in the Galerkin formulation that must
be cancelled. When this flag is active the weak terms are not assembled at all for the boundary
thus eliminating the need to cancel them.
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Steady State Phase Change Solver

Module name: PhaseChangeSolve
Module subroutines: SteadyPhaseChange
Module authors: Peter Råback and Juha Ruokolainen
Document authors: Peter Råback
Document created: 22.10.2004
Document edited: 14.12.2009

25.1 Introduction
There are many phenomena that involve an interface between liquid and solid phase. Such problems occur,
for example, in crystal growth and casting processes. This subroutine defines the position of the phase change
boundary by finding the correct isotherm in a steady state simulation. The mesh is the correspondingly
mapped i.e. this is a Lagrangian approach.

For transient phase change algorithms look at the next chapter. For Eulerian phase change algorithm no
additional solver is required as the phase change is implemented within the heat equation of Elmer by using
the enthalpy method. Generally Lagrangian approaches are more accurate but their use is limited to rather
smooth interfaces with moderate displacements.

25.2 Theory
For the general theory on phase change look at the Theory section of the previous chapter.

Steady state algorithm
In steady state the algorithm is based mainly on geometrical ideas. First the heat equation for temperature T
is solved by using a flux condition for the interface

q = Lρ~V · ~n. (25.1)

Thereafter the next approximation for the phase change surface may be found by going trough each element
and creating a list of line segments Ej on the isosurface. This is basically the zero level-set of the field
T − Tm. Each line segment is defined by two coordinate ~xj,1 and ~xj,2. The surface is then updated by
mapping the current phase change surface to the line segments. For the moment a N2 algorithm is used for
the mapping. For larger cases a more robust search algorithm might be implemented.

For example, if a free surface is almost aligned along the x-axis, then for a node (xi, yi) on the boundary
the proposed change of the point i in the y-direction is

sy = (yj,1 − yi) + (xi − xj,1)
yj,2 − yi,1
xj,2 − xj,1

(25.2)
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assuming that xi ∈ [xj,1, xj,2] while sx = 0.

Speeding up the convergence
In many cases the simple geometrical search algorithm converges very slowly. The reason is the explicit
character of the algorithm that fails to account for the change in the temperature field caused by the moving
phase change boundary. This limitation may be partially overcome using suitable under- or over-relaxation.
This relaxation parameter may also be tuned during the iteration using lumped quantities such as the pro-
posed change in the volume of the phases that may be expressed as

U =
∫
A

~s · ~n dA. (25.3)

The proposed volume changes form a series, U (0), U (1), . . . , U (m−1), U (m). Assuming that the series is
a geometric one we may estimate the required relaxation factor that would give the correct phase change
boundary at just one iteration,

c(m) = c(m−1) U (m−1)

U (m−1) − U (m)
. (25.4)

In numerical tests this formula was found occasionally to overshoot and therefore a less aggressive version
is used instead,

c(m) = c(m−1) 1
2
U (m−1) + U (m)

U (m−1) − U (m)
. (25.5)

The use of the lumped model requires that the temperature field is described accurately enough. To ensure
numerical stability the factor c should have a upper and lower limits. After the factor has been defined the
suggested displacements are simply scaled with it, ~s′ = c~s.

It is also possible to accelerate the solution locally using a Newton kind of iteration. If the basic algorithm
has already been applied at least twice we may estimate the sensitivity of the local temperature to the moving
interface and using this information to estimate a new change,

s(m) =
Tm − T (m)

T (m) − T (m−1)
s(m−1). (25.6)

This algorithm might be a better option if the phase change surface is such that there is not much correlation
between the displacements at the extreme ends. However, the algorithm may be singular if the isotherms of
consecutive iterations cross. Any point i where T (m−1)

i ≈ T (m) leads to problems that may be difficult to
manage. This handicap may rarely limit the usability of the otherwise robust and effective scheme.

25.3 Applicable cases and limitations
The method has some limitations which are described below

• Limited to steady state cases

• Limited to 2D and axisymmetric cases.

• Phase change surface must be nearly aligned with either of the main axis. To be more precise the
boundary must in all instances be such that for each coordinate there is only one point on the boundary.

• Melting point is assumed to be constant over boundary (not concentration dependent, for example).

• It should be noted that the solver only gives the position of the phase change boundary.

• When internal mesh update is used the mesh is distorted only in one coordinate direction.
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25.4 Keywords
Solver solver id

It is worth noting that for this solver the problem is, or at least could be, solved accarately. All the
nonlinearities of the problem recide in the coupling with the heat equation. Hence, there is no point in
giving criteria on the nonlinear system level. Only the coupled level tells whether the system has truly
converged.

Equation String "Steady Phase Change"

Procedure File "SteadyPhaseChange" "SteadyPhaseChange"
The subroutine that performs the phase change analysis.

Variable String Surface
The variable for the PhaseSurface coordinate. This may be of any name as far as it is used
consistently also elsewhere.

Variable DOFs Integer 1
Degrees of freedom for the free surface coordinate, the default.

Phase Change Variable String
By default the phase change analysis uses Temperature as the active variable. The analysis
may be performed also to any other scalar variable given by this keyword

Nonlinear System Relaxation Factor Real
Giving this keyword triggers the use of relaxation in the phase change solver. Using a factor
below unity may sometimes be required to achieve convergence. Relaxed phase change variable
is defined as follows:

u
′

i = ui + λsi−1,

where λ is the factor given with this keyword. The default value for the relaxation factor is unity.
If using the lumped model to accelerate the solution the final relaxation factor will the product
of the two.

Nonlinear System Newton After Iterations Integer
The local Newton type of iteration may be set active after a number of iterations given by this
keyword.

Nonlinear System Newton After Tolerance Real
The Newton type of iteration may also be activated after a sufficiently small change in the norm.
This keyword gives the limit after which Newton iteration is triggered on.

Lumped Acceleration After Iterations Integer
The phase change solver may be accelerated pointwise, or by using a lumped model to determine
an optimal relaxation factor for the whole solution. This keyword activates the lumped model
procedure.

Lumped Acceleration Mode Integer
This helps to toggle between different versions of the lumped acceleration. The options include
values 0,1,2,3 where 0 is also the default.

Lumped Acceleration Limit Real
The lumped approach sometimes gives too high or too small relaxation factors. This may happen
particularly at the very vicinity of the solution where the approximation errors have a greater
effect.

Triple Point Fixed Logical
This keyword enforces the triple point to be fixed. This means that the temperature used for
finding the isotherm is set to be the temperature of the triple point. This freezes the position by
construction. Typically this should be compined with a temperature control that at convergence
results to the triple point being at melting point.
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Internal Mesh Movement Logical
The mesh around the growth interface may be moved in two ways: using the mesh update solver
based on the linear elasticity, or using the simple 1D mapping built in the solver. If this flag is
set active the internal mesh movement is used.

Passive Steps Integer
If for some reason we want to omit that the solved phase change position is updated to the mesh
we may use this flag which for the given number of rounds does not apply the mesh update.

Body body id

Solid Logical

Liquid Logical
The solver requires information on which of the materials in the system is solid and which is
liquid. Currently the solver assumes that both the liquid and solid is uniquely defined.

Material mat id

Melting Point Real
The melting point is the temperature at which the transition form solid to liquid occurs. The
melting point is assumed to be constant. If the triple point is fixed the value of the melting point
is not used in finding the levelset.

Density Real
Density may be needed in the computation of the surface normals By default, the normals point
out from the denser of the two materials. Also the density is needed for the computation of latent
heat release.

Latent Heat Real
The latent heat is the specific internal energy related to the phase change. The latent heat may
also be a variable. It is actually not needed by the phase change solver but must be provided for
the heat solver.

Boundary Condition bc id

Phase Change Logical
The interface of the phase change is determined by this special flag.

Phase Velocity i Real
For the steady state case the heat equation often requires the heat flux as a boundary condition.
For this reason the phase velocity for each component may be determined. The keyword is not
needed by the current solver.
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Particle Dynamics

Mdule name: ParticleDynamics
Module subroutines: ParticleDynamics
Module authors: Peter Råback, Juha Ruokolainen
Module status: Alpha
Document authors: Peter Råback
Document created: 16.10.2010
Document edited: 17.10.2010

26.1 Introduction
Note: this is an initial version of the dynamic particle tracker. For real applications it probably requires some
additional effort.

The ability to follow single or statistical particles within a finite element can be used in a variety of appli-
cations. A common application is to follow particles along streamlines for the purpose of flow visualization.
Accounting for electrostatic forces opens the field to microfluidics and accounting for the gravitational force
enables applications in sedimentation, for example. If also particle-particle interaction is accounted for also
granular flow phenomena may be studied.

This module depends on the many library routines related to particle transport in Elmer. In this module
it is assumed that there may be particle-particle interactions. This choice fixes the time-stepping strategies
of the different particles together, at least without heroic timestepping schemes. In other words, the same
timestep size is applied to the whole particle set.

The particles are located in the finite element mesh using a marching routine where intersections with
element boundaries are checked for. The nearest boundary on the way is crossed until there is no boundary
to cross. Then the right element has been reached. The algorithm is fast when the stepsize with respect to
elementsize is smaller or of the same order. Therefore for the initialization the octree-based search may be
more economical and also more robust regarding geometric shapes.

The particle-particle interaction is based on the knowledge of nearest neighbours. Currently the neigh-
bours are determined using the closeness to the nodes if the parent element. This means that the interaction
distance needs to be smaller than h/2 where h is the mesh parameter. Further, it means that the mesh must
be rather uniform.

As the name implies, this module assumes the particles to be dynamic i.e. they have an acceleration.
However, the user may also use the module neglecting the inertial forces and requiring a force balance
between the drag force and external forces.
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26.2 Theory

Forces acting on the particle
Assume that we have a particle in position ~r. The corresponding velocity is

~v =
d~r

dt
(26.1)

Newton’s second law yields

m
d~v

dt
= Σf(~r,~v, . . .) (26.2)

where a number of different forces may be considered.
The gravity force acting on the particle is

~f = m~g, (26.3)

where ~g is the acceleration due to gravity. The electrostatic force is simply proportional to the electric field

~fe = q ~E = q∇φ (26.4)

where q is the electric charge.
The viscous fluids cause also a force that acts on the particle

~fS = −b(~v − ~v0) (26.5)

where ~v0 is the velocity of the fluid. If the change is estimated to be d~r then the estimate may be improved
by the gradient of velocity, i.e. ∇~v0 ·d~r. For Stokes flow the proportionality coefficient scales with viscosity,
for example for spheres b = 6πηd where η is the fluid viscosity and d the radius of the sphere.

Collision model
Two particles may collide with one-another. Assume that the initial particle positions are ~r1 and ~r2. Velocity
vectors are ~v1 and ~v2 and lets define δ~r = ~r1 − ~r2 and δ~v = ~v1 − ~v2. Now the condition for a collision is

|δ~r + δ~v dt| = R1 +R2. (26.6)

This lease to condition for the timestep

dt =
−b−

√
b2 − ac

a
(26.7)

where b = δ~r · δ~v, a = δ~v · δ~v, and c = δ~r · δ~r − (R1 +R2)2. Collision happens if 0 < dt < Dt.
The collision only affects the normal component. The normal vector is aligned with δ~r′ = δ~r + dt δ~v

i.e. ~nr = ~r′/|~r′|. Now the normal velocity components are vi,n = ~vi · ~nr. After the collision the normal
velocity component is

v′1,n =
cM2(v2,n − v1,n) +M1v1,n +M2v2,n

M1 +M2
(26.8)

and likewise for v′2,n. Here the parameter c is called bounciness and it varies between zero, for fully inelastic
collision, to one, for fully elastic collisions. Tthe new velocity is now

~v′i = ~vi + (v′i,n − vi,n)~nr (26.9)

and the new position,
~r′i = ~ri + ~vidt+ ~v′idt

′ (26.10)

where dt′ = Dt− dt.
Collisions with the wall are governed with the same equations assuming that mass of the wall is infinite.
The change in the velocity and coordinate position may be mutated to a change in velocity and force.

This way the collision model is better additive with the other type of models present in the system.
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Contact model
In general the contact between particles depends on their relative position, relative velocity, and relative
angular velocity. Generally the contacts should include some damping (negative feedback from velocity)
since otherwise the system is prone to flow up. In molecular dynamics, for example, also interaction with
more than two particles should be considered. The current treatment is quite limited and we here assume
that the contact results just to a spring force in the form

~fk = kmax(R1 +R2 − |d~r|, 0)~nr, (26.11)

where k is the spring coefficient.
A similar particle contact model may be present with the wall but possibly with different value for the

spring coefficient.

Periodic boundary conditions
It is relatively straight-forward to implement periodic boundary conditions for rectangular and hexahedral
type of geometries. And for different geometries the periodic conditions seems more unlikely.

Time evolution
For particles with mass the basic update sequence of velocity and position is

~vi+1 = ~v +
dt

m
Σf (26.12)

~ri+1 = ~r + dt~vi+1 (26.13)

while for massless particles it is assumed that the particle drag is in balance with the other forces given
explicitely

~vi+1 =
1
b
Σf (26.14)

~ri+1 = ~r + dt~vi+1 (26.15)

The timestep dt may be given explicitely, or it may be defined from the charateristic velocity V . If the
change in distance dS is given then

dt =
dS

V
, (26.16)

and when the Courant number C is given

dt = C
h

V
, (26.17)

where V is either the maximum absolute velocity, or the mean absolute velocity.
Also other timestepping schemes could be used but that’s something for later.

26.2.1 Postprocessing
The possibility to use each particle as an integration point in data fitting problem makes it possible to couple
the particles back to a continuous field. The following kinds of information could be abstracted from the
particles, for example.
Kinetic energy of particles

Ek =
1
2
mv2. (26.18)

Potential energy associated to gravity field

Eg = m~g · ~r. (26.19)

Potential energy associated to electrostatic field The corresponding potential energy is

Ee = qφ. (26.20)

Etc. In practice sufficient amount of data may not be present at every node and hence some regularization
may be applied to the fitting problem. In practice this means adding some diffusion to the fitting problem.
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26.3 Keywords
Solver solver id

Equation String [ParticleDynamics]
The name of the equation.

Procedure File "ParticleDynamics" "ParticleDynamics"
The name of the procedure.

Keywords related to the allocation and initialization of the particles.

Number of Particles Integer
Number of particles to be sent. The number may be given by this keyword as an absolute number.
Often a relative number, particularly in parallel computation, may be favorable.

Particle Node Fraction Real
The relative fraction of particles to nodes. The nodes may also be masked ones.

Particle Element Fraction Real
The relative fraction of particles to elements. The elements may also be masked ones.

Coordinate Initialization Method String
Initialization method for the coordinates. The options include nodal ordered, elemental
ordered, sphere random, box random, box random cubic with their own initial-
ization strategy.

Initial Coordinate Size n, dim; Real
The default initialization methods for coordinates.

Initialization Condition Variable String
If this is given then the particles are initialized only where this has a nonzero permutation vector.

Initialization Mask Variable String
If this is given then the particles are initialized only in elements or nodes where the variable has
a positive value.

Min Initial Coordinate i Real

Max Initial Coordinate i Real
For box initialization methods set the bounding box for doing initialization.

Particle Cell Radius Real
If the initialization method is box random cubic then the particle is always put to a unit cell
located in the given bounding box.

Particle Cell Fraction Real
If the initialization method is box random cubic then this keyword gives the fraction of
filled cells in the initial configuration.

Initial Sphere Radius Real
If the initialization method is sphere random then this set the radius of the sphere.

Initial Sphere Center Size 3; Real
Sets the size of the initial sphere center.

Velocity Initialization Method String
There are many ways to initialize the velocities of the particles: thermal random, even
random, constant random.

Initial Velocity Size n, dim; Real
The particle velocities may be also initialized only by this keyword, or this may be used to give
a bulk component to the otherwise random velocity field.

Initial Velocity Amplitude Real
In many velocity initialization methods an initial velocity amplitude is needed.
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Initial Velocity Time Real
When initializing the velocity also the initial coordinates may be affected by determining a offset
for the time used to advance the particles. This could be used, for example, to distribute the
particles from an initial point using the random velocity field.

Initial Coordinate Search Logical
After the initialization is done do an initial octree-based search for the initial coordinate posi-
tions. This is applicable only to serial problems.

Reinitialize Particles Logical
Reinitialize the particles in the start of each time when the subroutine is called. This would make
sense in some kind of scanning mode. The default is False.

Particle Release Number Integer
If not all particles are sent at the same time. This is the absolute number of particles sent at the
start of the subroutine call.

Particle Release Fraction Real
If not all particles are sent at the same time. This is the fraction of particles sent at the start of
the subroutine call.

Delete Wall Particles Logical
Currently a hack which is used to remove particles sitting on the wall which otherwise seem to
get stuck.

Keywords related to the timestepping strategy.

Timestep Size Real
The internal timestep size.

Max Timestep Size Real
The lower limit of the internal timestep size.

Min Timestep Size Real
The upper limit of the internal timestep size.

Timestep Distance Real
The distance that is travelled within one timestep based on the characteristic velocity.

Timestep Courant Number Real
The desired courant number resulting from the timestep based on the characteristic velocity.
Note that currently just one element is used to compute the parameter h. A global definition of
the courant number would result to a significant increase in the computational cost.

Max Characteristic Speed Logical
When computing characteristic velocity use the max norm.

Max Timestep Intervals Integer
Maximum number of internal timesteps.

Max Cumulative Time Real
Maximum cumulative time within one call.

Simulation Timestep Sizes Logical
Alternatively, one may use the timesteps as defined by the Timestep Sizes of the Simulation
section.

Keywords related to the actual physical interaction models chosen within the particles and with particles
and walls.

Particle Particle Collision Logical
Is there some collisions between particles.

Particle Particle Contact Logical
Is there contact between particles resulting to additional forces.
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Box Particle Periodic Logical
Is the system periodic.

Box Periodic Directions Integer
If not all directions require the periodic model this may be used to define the active directions.

Box Particle Collision Logical
Is there collisions between particles and 2D or 3D box. This provided for a cheaper treatment of
BCs than the generic way.

Box Particle Contact Logical
Is there contact between particles and walls resulting to additional force.

Box Contact Directions Integer
If not all directions require the contact model this may be used to define the active directions.

Velocity Variable Name String
Name of the variable if velocity drag is present.

Velocity Gradient Correction Logical
When using the drag model evaluate the drag forces using correction from the velocity gradient.

Potential Variable Name String
Name of the variable if electrostatic potential is present.

Velocity Condition Variable Name String
Name of the field which determines the fixed velocity conditions of the particles.

Coordinate Condition Variable Name String
Name of the field which determines the fixed coordinate conditions of the particles.

Keywords related to the physical properties of the particle and to the joint physical properties of the
particle-particle and particle-wall contacts.

Particle Mass Real
There are a number of particle properties needed in different interaction models and particle mass
is one of them. In principle these could be altered to be variables but currently they are assumed
to be the same for all particles.

Particle Radius Real
The particle raidus used in particle-particle interaction, and in evaluating the density of the par-
ticle.

Particle Gravity Logical
Should gravity be accounted for. If yes, use the gravity defined in the

Particle Lift Logical
The background fluid has a density that results to a lift (bouancy) that may be accounted for.
Should gravity be accounted for. If yes, use the gravity defined in the Constants section.

Particle Damping Real
Particle damping proportional to velocity only.

Particle Drag Coefficient Real
Particle drag coefficient in fluid field.

Particle Bounciness Real
Defines, when particles collide is the collision totally elastic or totally inelastic. Corresponding
extreme values are 1 and 0. This relates only to collision models.

Particle Spring Real
Spring constant in the force model between particles. This relates only to contact models.

Particle Charge Real
The electric charge of the particle.
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Particle Decay Distance Real
The decay of the particle effect.

Wall Particle Radius Real
In interaction with the walls different properties are given as the interaction with the wall is quite
different regarding, for example, the contact shape.

Wall Particle Spring Real
Spring constant in interaction with wall.

Wall Particle Bounciness Real
Elasticity of collision with interaction with the wall.

Keywords related to the generation of fields from the particle data.

Particle To Field Logical
Is there any coupling from particles to field needed? This leads to the need of finite element
machnirery. To opposite is always assumed to be true i.e. the particles are always assumed to be
located in the FE mesh.

Reinitialize Field Logical
When revisiting the solver should the particle field be initialized at the start.

Particle To Field Mode Integer
If a field is generated from the particles, what actually should be computed.

Particle To Field Decay Time Real
This is an optional parameter that represents the characteristic time that is used to forget history
data from the particle to field representation.

Particle Property Normalize Logical
Normalize the particle properties i.e. divide the trace with the corresponding weight. As the
weight may be even zero this is done by setting the weight to the diagonal of the FE matrix and
adding some diffusion to the system. This also favors smoother solutions (regularization).

Particle Property Diffusion Coefficient Real
The value of the diffusion constant used in the regularization.

Keywords related to saving and echoing information. No effect to the actual computations.

Output Format String
Output format which may be either table or vtu.

Table Format Logical

Vtu Format Logical
Alternative way of giving the output format. Has the nice property that several formats may be
given at the same time.

Output Intervals Integer
The internal output interval of the solver.

Simulation Output Intervals Logical
Use the Output Intervals as defined in the Simulation section. Note that currently
only one integer may be given.

Statistical Info Logical
Optionally print out on the screen some statistical information on the coordinate positions and
velocities. May be useful for debugging purposes, for example.

Timing Info Logical
Optionlally print out on the screen some info an the CPU time usage.

Filename Prefix String
The prefix of the filename used for saving. Depending on the chosen format an appropriate suffix
is attached to the prefix.
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Filename Particle Numbering Logical
If possible in the format, use particle indexes for the nunmbering of files.

Filename Timestep Numbering Logical
If possible in the format, use timestep indexes for the numbering of the files. This is the default
in vtu format.

Scalar Field i String
The scalar fields of the particles to be saved in vtu format. Currenyly options include distance
and dt.

Vector Field i String
The vector fields of the particles to be saved in vtu format. Currenyly options include velocity
and force.

Particle Save Fraction Real
If there is a huge number of particles it may be sufficient to use only a subset of them for
visualization. This keyword gives the fraction.

Boundary Condition bc id

Wall Particle Collision Logical
This activates the collision model between particles and generic boundaries.

Particle Accumulation Logical
An optional flag that activates the possible destruction of the particles at the boundary in case
conditions for accumulation are met.

Particle Accumulation Max Speed Real
If this critical speed is given, then accumulate only those particles with smaller velocity.

Particle Accumulation Max Shear Real
If this critical shear rate is given, then accumulate only those particles with a smaller shear rate.

Particle Trace Logical
If this flag is set active then use the accumulated particles to compute a trace to a finite element
field.

Moving Wall Logical
The movement of the wall may be accounted for in the wall-particle collision model.
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27.1 Introduction
There are a number of problems involving free surfaces in continuum mechanics. There are two main strate-
gies to solve them using the finite element method: Lagrangian and Eulerian approach. In the Lagrangian
approach the free surface is solved exactly so that it is also an interface between the individual elements. This
requires that the computational mesh is distorted in a way that this is possible. However, often the changes
in geometry may be too drastic or even the whole topology may change and the Lagrangian approach is no
longer feasible. The Eulerian approach describes the interface in a fixed mesh using some additional variable
to describe the position of the interface. One possible Eulerian technique is the level-set method (LSM).

In the level-set method the free surface is given as a zero level-set of a higher dimensional variable. E.g.
for 2D surfaces the level-set function is defined in 3D space. The level-set function is usually defined to
be a signed distance so that inside the domain it obtains a positive value and outside a negative value. The
changes in the value of the level-set function mean also that the interface changes the position.

This module includes several different subroutines that may be used when applying the level-set method.
Currently there is no reinitialization strategy for 3D problems. Also some other procedures are not fully
optimized for the best performance. Therefore the current implementation is best applied to quite simple 2D
problems.

27.2 Theory
The interface is defined by a marker function φ so that at the interface φ = 0, inside the fluid of interest
φ > 0 and elsewhere φ < 0. The interface is update by solving the equation

∂φ

∂t
+ ~u · ∇φ = a (27.1)

where ~u is the convection field and a is the normal flux on the interface. It is quite challenging to solve
the differential equation above without diffusion effects playing a significant role. It is advisable to use 2nd
order time-discretization schemes and short timesteps. More precisely, the Courant number C = |~u|dt/h
should be below unity.
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It is desirable that the absolute value of function equals the shortest distance to the zero level-set. How-
ever, as the level-set function is advected this property may be gradually lost. Therefore a process called
reinitialization may be evoked. In 2D the reinitialization may be easily done by geometric procedure. First
the zero level-set is formed by going through all the elements and finding the line segments that make the
zero level-set. Then the minimum distance of all the nodes is computed by a brute-force search. Assuming
there areN nodes andM line segments the search algorithm isN×M which is quite acceptable complexity
for small cases but may become computationally costly in large cases.

The line segments may be assumed to go with the flow and thereby they form an on-the-fly Lagrangian
mesh. Therefore it is also possible to advect the line segments when the velocity field is given since for
any node ~r = ~r + ~u dt. After the advection the shortest distance is computed. In the case of no advection
the sign of the distance is inherited from the original level-set function. However, when the level-set is also
convected the sign must be deduced from the geometric information as well. In the current implementation
each line segment is given a flag telling on which side of the element the fluid of interest is located. This
directional information is then used in giving the correct sign for the distance.

The volume of the fluid of interest in the level-set method may be computed over an integral that obtains
a value one inside the fluid and value zero outside the fluid. The Heaviside function H(φ) has this desired
property. However, as the interface does not follow the element division the numerical integration would
result into spurious fluctuations depending on the position of the interface within the elements. To obtain a
smooth behavior the Heaviside function must be regularized.

Hα(x) =


0, x < −α
f(α/x) |x| ≤ α

1, x > α,

(27.2)

where the followin has been implemented

f(t) =
1
2

(
1 + sin

(
t
π

2

))
(27.3)

while one could also use
f(t) =

3
4
(
t− t3/3

)
+

1
2
. (27.4)

Here α is the interface bandwidth which equals typically the size of a few elements. Now the volume (area
in 2D) is obtained by the integral

V =
∫

Ω

Hα(φ) dΩ. (27.5)

After the same regularization the area (length in 2D) may be obtained from the integral

A =
∫

Ω

δα(φ)|∇φ| dΩ (27.6)

where the delta function is

δα(x) =

{
0, |x| > α
1
2α cos

(
x
aπ
)
, |x| ≤ α.

(27.7)

The information obtained by the above integrals may be used to improve the volume conservation of the
level-set advection. If the initial volume V0 is known the level-set function may be given a small correction
by

dφ =
V0 − V

A
. (27.8)

This correction has no physical basis but it may be argued that a consistently small update of the level-set
function has a minor effect in overall results. It is more important that the volume is conserved since the
history information of the shape of a bubble is gradually lost while the errors in volume are never forgotten.
However, if the fluid of interest is divided into several parts this kind of overall correction does not have any
justification since it could ruin the volume balance between the different domains.
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The problems in accuracy may be partially resolved by using an optimal timestepping strategy. This
may be achieved by looking at the velocity field around the active boundary. The normal velocity may be
obtained by un = ~u · ∇φ̃. Registering the maximum velocity at band the timestep may be limited so that
the Courant number is bound. If ds is the maximum allowed change in the position of the zero level-set the
corresponding time-step is dt = ds/max |un|.

In the Eulerian approach to the free surface problems the surface tension force must be smeared out to a
volume force within a narrow band from the interface. The transformation is achieved by using a regularized
delta function, ∫

Γ

σκ dΓ =
∫

Ω

σκδ(φ)∇φdΩ, (27.9)

where σ is the surface tension coefficient and κ the curvature of the interface given by

κ = ∇ · ∇φ
|∇φ|

. (27.10)

In the finite element approach the force cannot be estimated directly since it involves three derivatives of the
level-set function. Therefore we must solve an additional equation for the curvature κ,

κ− cκ∇2κ = ∇ · ∇φ̃. (27.11)

Here cκ is an ad’hoc diffusion coefficient that may be used to smooth the resulting curvature field. Otherwise
the sharp corners may result to very large peak values of the curvature. The weak formulation of the above
equation introduces surface fluxes which are evaluated from the normal derivatives of the level-set function.
Once the level-set function and the corresponding curvature have been computed the surface tension may be
applied as a volume force in the flow equations.

27.3 Keywords

LevelSetSolver
This subroutine uses the finite element method to solve the equation (27.1). The implementation is valid in
2D, 3D and axisymmetric problems.

Solver solver id

Equation String "Level Set Solver"

Procedure File "LevelSet" "LevelSetSolver"
The subroutine for advecting the level-set function.

Variable String "Surface"
The name of the level-set function. This may be chosen freely as long as it is used consistently
elsewhere.

Stabilize Logical
Either stabilization or bubbles are used to solve the convection problem. This flag enforces the
stabilization on.

Material mat id

LevelSet Velocity i Real
The velocity field that advects the level-set function. In 2D i=1,2 and in 3D i=1,2,3. This
may be a constant field or also something computed with the Navier-Stokes solver.

Body Force bodyforce id

LevelSet Flux Real
The flux (i.e. the normal velocity) of the level-set function.
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LevelSetDistance
This solver uses the geometric information to compute the signed distance and, if desired, to advect the
zero level-set at the same time. This solver does not solve an equation and hence it does not need to have a
variable of its own. The solver is limited to 2D and axisymmetric cases.

Solver solver id

Equation String "Level Set Distance"

Procedure File "LevelSet" "LevelSetDistance"
The subroutine for renormalizing (and advecting) the level-set function.

LevelSet Variable String "Surface"
This keyword should refer to the name of the level-set variable that is used to advect the field.
The default is Surface.

Exported Variable 1 String "Surface"
In case the level-set variable does not exist it must be introduced. This may be the case if this
subroutine is also used for advecting the level-set function.

LevelSet Convect Logical
Whether to also convect the level-set function. Default is False.

Extract Interval Integer
When this function is used to extract the zero level-set function the user may choose the interval
how often this is done. The default is one. Just extracting the level-set may be useful if one just
wants to save the zero level-set without activating reinitialization.

Reinitialize Interval Integer
When this function is used to reinitialize the level-set function the user may choose the interval
how often this is done. The default is one but often this results to excessive smoothening of the
level-set field. If reinitialization is asked the zero level-set will also be automatically extracted.

Reinitialize Passive Logical
If this keyword is set True the reinitialization is not applied to the level-set field. The field is
only used to extract the zero level-set and compute the corresponding signed distance but this
information is not used to change the original field.

Narrow Band Real
In case that also the convecting is done by this solver there is the possibility to introduce a
narrow band which gives the distance at within the level-set function is recomputed. Default
is ∞. Typically this should be larger that the level-set bandwidth α used to evaluate surface
integrals.

Filename File
The zero level-set may also be saved. It consists of a number of line segments that are defined
elementwise. The results from the file may be used for visualization, for example, in MatLab. If
no filename is given the zero level-set is not saved.

File Append Logical
If the above is given this flag enforces the results to be appended on the same file rather than
writing over the old results.

Material mat id

LevelSet Velocity 1 Real

LevelSet Velocity 2 Real
If also convection is accounted in this solver the convection field is given by the above expres-
sions. Currently it is not possible to give the desired surface flux as it is not uniquely defined for
the line segments having different normals even at the same point.
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LevelSetIntegrate
This subroutine computes the integrals (27.5) and (27.6). In addition of computing volume and surface
integrals this subroutine may also be used to set the absolute level of the level-set function so that volume is
conserved using equation (27.8). The implementation is valid in 2D, 3D and axisymmetric problems.

Solver solver id

Equation String Level Set Integrate

Procedure File "LevelSet" "LevelSetIntegrate"
The subroutine for computing the integrals.

LevelSet Variable String "Surface"
This keyword gives the name of the level-set function used for computing the integrals. The
default is Surface.

LevelSet Bandwidth Real
When computing the values over the domain the interface is treated a with smooth functions.
How smooth the functions are depends on the value of this keyword. Typically the bandwidth
should be such that the interface is extended over a few elements.

Conserve Volume Logical
The volume in the level-set formulation is not conserved by construction. To that end the level
of the level-set function may be tuned so that conservation is enforced. The default is False.

Conserve Volume Relaxation Real
If conservation is enforced it may be done only partially as there are inaccuracies in the avalution
of the volume integrals. The default is one.

Initial Volume Real
If conservation is enforced the target volume is given by this keyword. Otherwise the volume
from the first timestep is used as the target value.

LevelSetCurvature
This solver computes the value of the curvature give the level-set function using equation (27.11).

Solver solver id

Equation String Level Set Curvature

Procedure File "LevelSet" "LevelSetCurvature"
The subroutine for computing the curvature.

Variable String "Curvature"
The name of the curvature variable.

LevelSet Variable String "Surface"
This keyword gives the name of the level-set function used for computing the integrals. The
default is Surface.

Curvature Diffusion Real
Artificial diffusion may be used to control the singularities of the curvature field around sharp
corners. The default is zero.

Curvature Coefficient Real
A constant that is used to multiply the curvature field before the solver is exited. This may be
used for example to change the sign of the curvature if the material of interest is on the outside
and not an the inside.

LevelSet Bandwidth Real
The delta function for the volume force may be applied to the curvature field also within this
solver directly. This has the disadvantage that the evaluation is done at nodal points rather than
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at the integration points. However, if the flow solver used may not be modified this may be the
best alternative. If this keyword does not exist, no delta function is used to filter the curvature
field.

Boundary Condition bc id

Levelset Curvature BC Logical
The weak formulation of the curvature computation results to boundary integrals that should be
set at all surfaces where the curvature is computed.

LevelSetTimestep
The solution of the level-set function is accurate only if the timestep is limited so that the local Courant
number along the zero level-set is in the order of one or smaller. A tailored function for setting the timestep
is given in this module. This solver assumes that the level-set variable is named Surface and that this
variable is related to some solver. The velocity needed for setting the timestep should be given by the
keywords LevelSet Velocity i, where i=1,2,3.

Simulation
The function call and the needed parameters reside in the Simulation block of the command file.

Timestep Function
Real Procedure "LevelSet" "LevelSetTimestep"

LevelSet Courant Number Real
This keyword gives the desired Courant number of for the level-set solvers. The default for the
desired Courant number is one.

LevelSet Timestep Directional Logical
If the timestep limit is active this option may be used to account only the normal direction of the
interface velocity rather that the absolute direction. Default is False.

Other solvers
Basically the user may give user defined material parameters where the values are computed as a function of
the levelset function. Unfortunately this approach generally uses nodal points for the smearing whereas it is
optimal to use the Gaussian integration points for doing this. There is one exception to this model that has
been implemented for the MaterialModels module, namely the viscosity may be computed at Gaussian
integration points.

Material mat id

Viscosity Model String levelset
This uses the levelset methodolohy to smear out the viscosity between inside and outside values.

Viscosity Real
The value of the viscosity outside the domain (negative levelset function values).

Viscosity Difference Real
The difference between the inside and outside viscosity values.

Levelset bandwidth Real
The bandwidth at which the viscosity is smeared out between the extreme values.
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28.1 Introduction
This is an instructional text for using Elmer solvers I created for DFT calculations during the year 2006 while
preparing my Master’s Thesis [7]. These Solvers are rather experimental and I would not recommend their
use for highly complicated problems. Nevertheless they provide nice backbone for creating own DFT-solvers
with finite element method.

28.2 Theory
In DFT, Kohn-Sham equations [1, 2] play central role. They are set of highly nonlinear equations which
define uniquely the exact ground state charge density. From charge density the total energy of the system in
ground state can be calculated, which is unfortunately not implemented in present code.

The Kohn-Sham equations have a form(
− 1

2∆ + VEXT (r) + VC [ρ(r)] + VXC [ρ(r)]
)
ψk(r) = εk ψk(r)

ρ(r) =
∑N
k=1 |ψk(r)|2 ,

(28.1)

where KS-orbitals ψk(r) are normalized,
∫
ψk(r)2dr = 1, for eack k = 1, 2, . . . , N . VEXT is the external

potential caused by the nuclei, VC is the non-interacting Coulomb potential and VXC is the exchange corre-
lation potential that includes all the complicated many body effects, at least approximates. Nice explanation
from the widely used Local Density Approximatio can be found from [3]. Nonlinearity occurs in eigenvalue
problem, where the operator depends on the solution of the eigen problem.

Self-Consistent iteration
The equations (28.1) are solved with self-consistent iteration (fixed point iteration). In this iteration Coulomb
and external potentials are solved from Poisson equation. The iteration steps are as follows:

1. Begin with previous or initial guess for charge density ρj
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2. Solve new electric potential from Poisson equation,

−∆V j+1(r) = 1
4πρ

j(r)−
M∑
i=1

Zi δ(r − ri) , (28.2)

where δ refes to Dirac’s delta distribution (point load).

3. Solve eigenvalue problem,(
− 1

2∆ + V j+1(r) + V j+1
XC (r)

)
ψk(r) = εkψk(r) , (28.3)

where V j+1
XC is calculated via some function W from point values of charge density ρj . V j+1

XC (r) =
W (ρj(r))).

4. Sum new charge density,

ρj+1(r) =
N∑
k=1

wk ψk(r)2 , (28.4)

where the weight coefficients wk depend on the numbers of electrons in orbitals. Extensive overview
of calculation of molecular orbitals can be found from [4, 5].

The point load at the nuclei location requires, that exactly at each nuclei there has to be a node in the
mesh. For the functionality of the solvers no other requirements exists for the mesh or domain.

Unfortunately convergence of this iteration procedure is not guaranteed. For simple atoms (Z = 1,2,3,4)
code converges within any tolerance limits but for more complicated molecules or atoms usually not. Sensi-
ble tolerances were found to between 10−6 or 10−4.

Boundary Conditions
In theory the zero level of the potential can be set arbitrarily and often in practice one uses condition V (r) →
0, when |r| → ∞. Of course in real calculations the domain Ω is finite and we set, V (r) = 0 if r ∈ ∂Ω. One
also assumes Ω to be large enough, so that charge density vanishes on the boundary, ρ(r) = 0 if r ∈ ∂Ω, so
we set ψk(r) = 0 if r ∈ ∂Ω.

In Kohn-Sham -equations in order to obtain positive definite coefficient matrix on the left hand side of
eigenvalue problem (28.1), one sets V (r) → C, when |r| → ∞. The constant C has to be large enough, so
the eigenvalues are shifted positive. But too large value slowers the convergence of the eigenvalue solver.

28.3 Keywords
From the structure of the self-consistent iteration it was natural to divide the solution procedure for three
solvers, Poisson solver, eigensolver and charge density summation. For each solver some keywords to
control the solution procedure were added.

Poisson Solver
Poisson Solver demands knowledge about the locations of the nuclei and their atomic numbers. There has to
be nodes in the mesh at the nuclei locations, or else error will occur. Following example demonstrates how
nuclei of the water molecule with two atoms of atomic numbers Z = 1 (Hydrogen) and single with Z = 8
(Oxygen) are set to the coordinates (0.0, 0.0, 0.0) (Oxygen) and (−1.43, 1.11, 0.0) and (1.43, 1.11, 0.0)
(Hydrogens). The rows beginning with ! are comments.

!
! NOFnuclei is the number of nuclei in the structure.
!
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NOFnuclei = Integer 3

!
! NucleiTable is an array of the form
! NucleiTable( NOFnuclei, 4 ) where each row
! includes the information of one nucleus.
! The colums are from left to right :
!
! atomic number, x-coordinate, y-coordinate and z-coordinate.
!

NucleiTable(3,4) = Real 8.0 0.0 0.0 0.0 \
1.0 -1.43 1.11 0.0 \
1.0 1.43 1.11 0.0

The self-consistent iteration requires heavy (under) relaxation to avoid divergence. Relaxation means
linear mixing of present solution with previous one(s). It is possible to use Guaranteed Reduction Pulay -
method [6, 7] where the mixing constants are calculated every time as a solution of a minimization problem,
it’s sensible to begin GR Pulay after some steps of linear mixing.

In following example the exponential relaxation scheme is changed to GR Pulay after 5 steps or if the
mixing parameter exceeds value 0.5 . Use of constant mixing parameter instead of increasing one can be
easily done by commenting out the first four uncommented lines and removing the comment sign ! from
following two lines.

!
! Select the relaxation method used, possibilities are
! constant mixing parameter a(k) = A or varying parameter
! with scheme a(k) = C + 1- A * Exp( B * k )
!

Relaxation Method = String "Exponential mixing"
Relaxation Parameter A = Real 1.0
Relaxation Parameter B = Real 0.05
Relaxation Parameter C = Real 0.005

! Relaxation Method = String "Constant mixing"
! Relaxation Parameter A = Real 0.01

Start GRPulay after iterations = Integer 5
Start GRPulay if relaxation factor is more than = Real 0.5

Eigenproblem Solver
Eigenproblem solver demands knowledge about the type of exchange correlation approximation used. Namely
the expression ofW in third self-consistent iteration step. In module xc.f90 there are several different for-
mulae for LDA approximations. Some of them include spin directions and are to be used with different
solver composition where KS-orbitals for up- and down-spins are calculated separately.

!
! Choose the type of the XC Potential, possible choises are:
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! "None"
! "Perdew-Zunger"
! "Von Barth-Hedin"
! "Gunnarsson-Lundqvist"
! "Perdew-Wang"
!

XC Potential type = String "Perdew-Zunger"

Charge Density Solver
Charge density solver demands knowledge about the number of KS-orbitals to be summed and the weights
of each orbital. These are the N and wk’s in fourth self-consistent iteration step. In following example one
sets N = 5 and wk = 2, for all k = 1, . . . , 5.

! Define the number of eigenmodes included on the
! calculation of charge density. Set weights for the
! eigen states. By default they are all 1.

Number of Eigenmodes Included = Integer 5
Weights of Eigen States(5,1) = Real 2.0 2.0 2.0 2.0 2.0

Weights of the Eigen States table has to be size (N, 1). Naturally N has to be equal or less
for the number of eigenstates to be solved in eigenvalue solver.
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System Reduction for Displacement
Solvers

Module name: RigidBodyReduction
Module subroutines: RigidBody
Module authors: Antti Pursula
Document authors: Antti Pursula
Document edited: August 27th 2003

29.1 Introduction
This module is used to reduce and simplify the computation of a displacement solver when the problem
includes rigid blocks. In such a case, it is often difficult for iterative solvers to find a solution for the full
system, and direct solvers become obsolite when the system is large enough. The convergence and also the
speed of the solution can be substantially improved when the degrees of freedom corresponding to the nodes
belonging in the rigid blocks are reduced onto the 6 DOFs (3 in 2D) of the corresponding rigid body. In the
module, the reduction is achieved via a projection matrix.

Additionally, the routine automatically eliminates the degrees of freedom corresponding to the Dirichlet
boundary conditions. It is also possible to request the elastic regions to be extended into the rigid blocks.
There is also possibility to reorder the reduced matrix elements to decrease its bandwidth.

29.2 Theory
The module starts with normally constructed matrix equation for the unknown displacements x, Ax = b.
Let us assume that the nodes are ordered in such a way that the first n elements of the vectors correspond to
the elastic parts of the structure and the remaining m elements correspond to the rigid parts of the structure.
The goal is to reduce the (n +m) × (n +m) matrix A to a (n + αk) × (n + αk) matrix B, where k is 3
for 2D and 6 for 3D problems and α is the number of rigid blocks present. Reductions are made also for the
vectors so that finally the matrix equation reads Bu = f .

The relation between the unknowns is
x = Pu, (29.1)

where the projection matrix P ties the nodes in the rigid bodies to the same displacements in coordinate
directions and the same rotations about the coordinate axis. The rotations are defined with a coordinate
system whose origin is at the center of each rigid body. For the right hand sides we can write

f = Qb, (29.2)
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where the matrix Q sums the forces and torques present at the nodes in rigid bodies for a resultant force and
torque of the center point of the corresponding rigid body. In both mappings, the rotations are linearized so
the module is valid only for cases where the rotations are small.

Using these definitions, we have
Ax = APu = b (29.3)

and
Bu = f = Qb. (29.4)

Combining the equations gives Bu = QAPu and thus

B = QAP. (29.5)

With a suitable order of the rotations one can write

Q = PT ≡ C, (29.6)

and
B = CACT . (29.7)

The matrix C has a identity matrix block of size n×n which keeps the elastic nodes intact, and a projection
block of size αk ×m.

The reduced order solution u is transformed back to the original nodes by the same mapping

x = CTu. (29.8)

29.3 Applicable cases and limitations
The module works for

• Linear steady-state problems

• Linear transient problems

• Eigen analysis

• Quadratic eigenproblems

There are following limitations:

• Rigid blocks should not have common nodes (there should be elastic nodes in between rigid blocks)

• If a Dirichlet bc is given on a node of a rigid block then the entire rigid block is assumed to be fixed
in all directions

29.4 Keywords
Body body id

Rigid Body Logical
Value True defines the rigid body.

Solver solver id
The module does not need a separate solver but a call in the stress analysis, or the elasticity solver in
the linear mode.

Equation String Stress Analysis

Variable String Displacement
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Variable DOFs Integer
It is important to give the DOFs right, either 2 or 3 depending on the dimension.

Before Linsolve File "RigidBodyReduction" "RigidBody"
The model order reduction is performed after the matrix has been assembled but before the
matrix equation has been solver. The matrix equation is modified to a smaller equation and the
new equation is solved within the subroutine.

Eigen Analysis Logical
It is possible to use the model order reduction with modal analysis, as well as with static and
transient cases.

Eigen System Values Integer
The number of eigen values to be computed.

Eigen System Damped Logical

Eigen System Use Identity Logical [True]
The reduction is possible also with quadratic (damped) eigenproblems.

Optimize Matrix Structure Logical
If true, the matrix structure is optimized. This feature is recommended since the reduced ma-
trix has often very scattered structure. The optimization is performed with the Cutholl-McKee
algorithm.

Reverse Ordering Logical
This flag can be used to reverse the matrix ordering if the matrix structure is optimized, resulting
in reverse Cuthill-McKee ordering.

Extend Elastic Region Logical
If true, the elastic regions of the geometry are extended into the rigid block. This feature allows
taking into account the bending in the joints between elastic and rigid parts.

Extend Elastic Layers Integer
Defines the number of element layers that the elastic regions are extended.

Output Node Types Logical
Writes in the ElmerPost output file a variable describing the status of each node in the geometry.
The variable has value 0 for elastic nodes, -1 for rigid blocks that are fixed due to a Dirichlet
boundary condition, and a positive integer for separate rigid blocks. The variable may be used
to check that the reduction is performed on the right blocks, and to check how many layers the
elastic regions should be extended, for example.

Additional Info Logical
If true, additional information is written about the performed tasks during the simulation.

29.5 Examples
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Figure 29.1: The cpu time required for the matrix reduction operations depends linearly on the degrees of
freedom in the system.
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Artificial Compressibility for FSI

Module name: ArtificialCompressibility
Module subroutines: CompressibilityScale
Module authors: Peter Råback
Document authors: Peter Råback
Document created: 16.2.2002
Document edited: 8.2.2006

30.1 Introduction
When fluid-structure interaction (FSI) problems are solved with a loosely coupled iteration strategy there is
a risk of applying unphysical boundary conditions that lead to severe convergence problems. The reason for
this is that initially the fluid domain is unaware of the constraint of the structural domain, and vice versa. If
the iteration converges this discrepancy will be settled, but sometimes the initial phase is so ill posed that
convergence is practically impossible to obtain [4, 3].

The problem may be approached by applying the method of artificial compressibility to the fluid-
structure interaction. Previously artificial compressibility has mainly been used as a trick to eliminate the
pressure from the Navier-Stokes equations or to improve the convergence of the solution procedure [2, 6, 1].
Here the compressibility is defined so that it makes the fluid imitate the elastic response of the structure.

The method is best suited for cases where there is a direct correspondence between the pressure and the
volume. Inertial forces and traction forces should be of lesser importance. The method might, for example,
boost up the modeling of human arteries.

30.2 Theory

30.2.1 Fluid-structure interaction
The theoretical model with some results is thouroughly presented in

We look at the time-dependent fluid-structure interaction of elastic structures and incompressible fluid.
The equations of momentum in the structural domain is

ρ
∂2~u

∂t2
= ∇ · τ + ~f in Ωs, (30.1)

where ρ is the density, ~u is the displacement, ~f the applied body force and τ = τ(~u) the stress tensor that
for elastic materials may be locally linearized with ~u. For the fluid fluid domain the equation is

ρ

(
∂~v

∂t
+ ~v · ∇~v

)
= ∇ · σ + ~f in Ωf , (30.2)
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where ~v the fluid velocity and σ the stress tensor. For Newtonian incompressible fluids the stress is

σ = 2µε(~v)− pI, (30.3)

where µ is the viscosity, ε(~v) the strain rate tensor and p the pressure. In addition the fluid has to follow the
equation of continuity that for incompressible fluid simplifies to

∇ · ~v = 0 in Ωf . (30.4)

For later use we, however, recall the general form of the continuity equation,

∂ρ

∂t
+∇ · (ρ~v) = 0 in Ωf . (30.5)

The fluid-structure interface, Γfs, must meet two different boundary conditions. At the interface the fluid
and structure velocity should be the same,

~v(~r, t) = ~̇u(~r, t), ~r ∈ Γfs. (30.6)

On the other hand, the surface force acting on the structure, ~gs, should be opposite to the force acting on the
fluid, ~gf , thus

~gs(~r, t) = −~gf (~r, t), ~r ∈ Γfs. (30.7)

A widely used iteration scheme in FSI is the following: First, assume a constant geometry and solve the
Navier-Stokes equation for the fluid domain with fixed boundary conditions for the velocity. Then calculate
the surface forces acting on the structure. Using these forces solve the structural problem. Using the resulting
displacement velocities as fixed boundary conditions resolve the fluid domain. Continue the procedure until
the solution has converged.

The above described iteration usually works quite well. However, in some cases the boundary condi-
tions (30.6) and (30.7) lead to problems. The elasticity solver is not aware of the divergence free constraint
of the velocity field. Therefore the suggested displacement velocities used as boundary conditions may well
be such that there is no solution for the continuity equation. A proper coupling method makes the solution
possible even if the velocity boundary conditions aren’t exactly correct. Further, if the Navier-Stokes equa-
tion is solved without taking into account the elasticity of the walls, the forces in equation (30.7) will be
exaggerated. The pathological case is one where all the boundaries have fixed velocities. Then even an in-
finitely small net flux leads to infinite pressure values. A proper coupling method should therefore also give
realistic pressure values even with inaccurate boundary conditions. The method of artificial compressibility
meets both these requirements.

30.2.2 Artificial compressibility
When a surface load is applied to an elastic container it results to a change in the volume. In many cases of
practical interest the change in volume is mainly due to a pressure variation from the equilibrium pressure
that leads to zero displacements. If the structural domain is described by linear equations the change in
volume dV has a direct dependence on the change in the pressure, dP , or

dV

V
= c dP. (30.8)

This assumption limits the use of the model in highly nonlinear cases.
The change in the volume should be the same as the net volume flux into the domain. As this cannot be

guaranteed during the iteration, some other way to enable the material conservation must be used. A natural
choice is to let the density of the fluid vary so that is has the same pressure response as the elastic walls,

dρ

ρ
= c dP, (30.9)

where c is the artificial compressibility. This is interpreted locally and inserted to the continuity equa-
tion (30.5) while neglecting the space derivative of the density, thus

c
dp

dt
+∇ · ~v = 0, (30.10)
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where dp is the local pressure change. Here the time derivative of pressure must be understood as an iteration
trick. A more precise expression is

c

∆t

(
p(m) − p(m−1)

)
+∇ · ~v(m) = 0, (30.11)

wherem is the current iteration step related to fluid-structure coupling. When the iteration converges p(m) →
p(m−1) and therefore the modified equation is consistent with the original one. The weak form of the
equation for finite element method (FEM) may easily be written,∫

Ωf

(∇ · ~v(m))ϕp dΩ +
1

∆t

∫
Ωf

c
(
p(m) − p(m−1)

)
ϕp dΩ = 0, (30.12)

where ϕp is the test function.
The artificial compressibility may be calculated analytically in simple geometries. For example, for a

thin cylinder with thickness h and radius R the compressibility is c = 2R/Eh [5], where E is the Young’s
modulus, and correspondingly for a sphere c = 3R/Eh.

In most practical cases the elastic response of the structure cannot be calculated analytically. Then the
compressibility may also be computed from equation (30.8) by applying a pressure change dP to the system,

c =
1
V

dV

dP
. (30.13)

The change in volume may be calculated by comparing it to initial volume, thus

c =
V − V0

V0

1
dP

. (30.14)

For small deformations ds = ~u · ~n, where ~n is the surface normal. Therefore we may use an alternative
form convenient for numerical computations,

c =

∫
Γfs

(~u · ~n) dA∫
Ωf
dV

∫
Γfs

dA∫
Γfs

dp dA
. (30.15)

This way c has a constant value over the domain.

30.2.3 Scaling artificial compressibility
If the artificial compressibility distribution is a priori defined we may use the above equations to scale the
compressibility appropriately. For example, the compressibility could be given only within a limited distance
from the elastic wall. and the functional behavior of c(~r) would be user defined. Computing compressibility
becomes then just a matter of scaling,

c(~r) = c0(~r)

∫
Γfs

(~u · ~n) dA∫
Ωf
c0(~r)dV

∫
Γfs

dA∫
Γfs

dp dA︸ ︷︷ ︸
scaling factor

. (30.16)

A suitable test load for computing compressibility is the current pressure load on the structure. However,
for the first step the compressibility must be predefined. It is safer to over-estimate it since that leads to too
small a pressure increase. Too large a pressure increase might ruin the solution of the elasticity solver and
by that also the computational mesh used by the flow solver would be corrupted. Therefore some sort of
exaggeration factor exceeding unity might be used to ensure convergence.
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30.2.4 Elementwise artificial compressibility
If the displacement field is extended smoothly throughout the whole geometry it may be possible to define
the artificial compressibility separately for each element or node. This is particularly usefull for geometries
where the elastic response changes significantly. The equation is now similar to (30.14),

c =
V e − V e0
V e0

1
dP

, (30.17)

where the superscript e refers to the volume of an element. This may also be solved using finite element
strategies to get nodal values for c.

30.3 Keywords

Keywords of FlowSolve
Material mat id

In the material section the compressibility model and the initial artificial compressibility field is given.

Compressibility Model String [Artificial Compressible]
Set the meterial model of the fluid.

Artificial Compressibility Real
The initial value of artificial compressibility. This may also be a distributed function that is then
scaled by the solver.

Keywords of solver CompressibilityScale
If the artificial compressibility is tuned so that it best imitates the elastic response, a additional solver must
be used to rescale the above mentioned compressibility. The solver computes the total compressibility and
the force acting on the surface. The compressibility is integrated over all volumes that are solved with the
navier-stokes equation.

Solver solver id

Equation String CompressibilityScale
The name of the solver.

Procedure File "ArtificialCompressibility"
"CompressibilityScale"
The subroutine in the dynamically linked file.

Steady State Convergence Tolerance Real
How much the relative value of the compressibility may change between iterations, abs(ci −
ci−1)/ci < ε.

Nonlinear System Relaxation Factor Real
Relaxation scheme c′i = λci + (1− λ)ci−1 for the compressibility. By dafault is λ = 1.

Boundary Condition bc id

Force BC Logical
The elastic response is calculated over the surface(s) which has this definition as True.

Keywords of solver CompressibilitySolver
When the compressibility is solved elementwise using this solver there has to usually be a isobaric steady-
state test phase where the compressibility is defined. For this solver all the normal Linear System
keywords also apply.
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Solver solver id

Equation String CompressibilitySolver

Procedure File "ArtificialCompressibility"
"CompressibilitySolver"

Variable String ac
The name of the artificial compressibility field variable.

Displacement Variable Name String "Mesh Update"
The name of the displacement field variable that is used to compute the the volume change.

Displaced Shape Logical True
Flag that defines whether the current shape is the displaced or original shape.

Reference Pressure Real
The value of pressure used for the test loading.

The computed field should then be given as the value in the material section.

Material mat id

Artificial Compressibility Equals ac
The initial value of artificial compressibility given by the solver.

30.3.1 Examples
The examples show a 2D square and a 3D cube being gradually filled. The fluid comes in from one wall and
the opposing elastic wall makes room for the fluid so that the continuity equation is satisfied. Here the value
of artificial compressibility is scaled every timestep to account for the nonlinear elasticity.

Figure 30.1: Snapshots of an elastic square being gradually filled by incompressible fluid.
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Figure 30.2: Snapshots of an elastic cube being gradually filled by incompressible fluid.
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Rotational form of the incompressible
Navier–Stokes equations

Module name: Stokes
Module subroutines: StokesSolver
Module authors: Mika Malinen
Document authors: Mika Malinen
Document edited: June 26th 2009

31.1 Introduction
The basic incompressible flow solver of Elmer uses the standard formulation of the Navier–Stokes equations.
This section describes an alternative solver based on the rotational form of the Navier–Stokes system. In
addition, some iterative methods that utilize splitting strategies in the solution of the associated discrete
problems are represented.

31.2 Field equations
Using the vector identity

(~u · ∇)~u = (∇× ~u)× ~u+
1
2
∇(~u · ~u), (31.1)

the Navier–Stokes system for incompressible Newtonian fluid may be written as

ρ

(
∂~u

∂t
+ (∇× ~u)× ~u

)
− 2µ∇ · ε(~u) +∇P = ~b,

∇ · ~u = 0,
(31.2)

where ε is the stretching tensor (2.4) and

P = p+
1
2
ρ~u · ~u (31.3)

is the total (Bernoulli) pressure. The stress σ, which may be of interest especially near boundaries, can now
be expressed as

σ = (−P +
1
2
ρ~u · ~u)I + 2µε(~u). (31.4)

The system (31.2) provides an alternative starting point for finding discrete solutions. Thus, instead
of approximating the conventional primitive variables (~u, p), we here look for discrete solutions of (~u, P ).
It should be noted that if the convection term is not taken into account the system (31.2) reduces to the
(generalized) Stokes equations. The pressure variable then reduces to the standard pressure, i.e. P = p.
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31.3 Boundary conditions
Either the normal velocity ~u ·~n, with ~n the outward unit normal vector, or the normal surface force σ~n ·~n can
be prescribed on the boundary. The tangential boundary conditions can be handled systemically in a similar
manner. Thus, if ~t is a tangent vector to the boundary, one may prescribe either the tangential velocity ~u · ~t
or the tangential surface force σ~n · ~t.

A rather common way to define an outflow boundary condition for the Navier–Stokes equations is to
impose the normal surface force condition

σ~n · ~n = 0, (31.5)

which ensures the uniqueness of the pressure solution. This condition arises when the homogeneous natural
boundary condition (do-nothing boundary condition) is imposed in the standard formulation of the Navier–
Stokes equations. It should be noted, however, that the homogeneous natural boundary condition associated
with the variational formulation of (31.2) can be written as

−P~n+ 2µε~n = σ~n− 1
2
ρ(~u · ~u)~n = ~0.

Thus, a distinction must here be made between the surface force boundary condition and the natural boundary
condition. In the case of the rotational form, imposing the homogeneous natural boundary condition in the
normal direction yields

σ~n · ~n =
1
2
ρ~u · ~u,

which, except for the special case of irrotational steady flow of a non-viscous fluid, may be an artificial
boundary condition. Nevertheless, the tangential natural boundary condition associated with the rotational
form is equivalent to the condition of vanishing tangential surface force, i.e. σ~n · ~t = 0.

31.4 Linearization
The linearization of the equation of motion in (31.2) can be done by utilizing the Newton iteration. This
iteration strategy is based on approximating the rotational convection term as

(∇× ~u)× ~u ≈ (∇× ~u)× ~a+ (∇× ~a)× ~u− (∇× ~a)× ~a

where ~a is the previous velocity iterate. In this connection, the nonlinear boundary condition corresponding
to the outflow condition (31.5) is linearized as

−P +
1
2
ρ(2~a · ~u− ~a · ~a) + 2µε(~u)~n · ~n = 0.

An alternative linearization strategy is to apply Picard’s method. Here this method corresponds to lin-
earizing the convection term and the outflow boundary condition as

(∇× ~u)× ~u ≈ (∇× ~u)× ~a

and
−P +

1
2
ρ~a · ~u+ 2µε(~u)~n · ~n = 0.

The convergence of the Newton method can be considerably faster than that of Picard’s method. Our
experience is that this can be the case, especially, when the steady solutions are sought for moderately large
Reynolds numbers. However, a difficulty with the Newton method is that the iteration may not be convergent
for arbitrary initial guesses. This trouble can often be avoided by performing some Picard updates before
switching to Newton’s method. In the case of time-accurate simulations this is usually unnecessary since
suitably accurate initial guesses are often available from the previous time levels.
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31.5 Discretization aspects
The solver is tailored to the case of the lowest-order continuous pressure approximation, but it does not
provide any in-built technique to stabilize discrete solutions based on inherently unstable equal-order ap-
proximations of (~u, P ). The solver offers two strategies which can be used to obtain stable methods. First,
one can use elements where the velocity approximation is augmented by using elementwise bubble func-
tions. Second, one can utilize hierarchic versions of the second-order elements to rise the polynomial order
of the velocity approximation. Both the strategies can be put into effect by utilizing the shape functions for
p-elements. Some stable approximation methods are summarized as follows.

• A hierarchic version of P2-P1 approximation for triangular and tetrahedral elements. If the ba-
sic mesh consists of linear elements (element type 303 or 504), giving the element type definition
Element = "p:2" in the Equation section switches to the P2-P1 approximation where the ve-
locity approximation is enhanced by using hierarchic basis functions associated with the mid-edge
nodes.

• A hierarchic version of Q2-Q1 approximation for rectangular and brick elements. Analogously to
the previous case, if the basic mesh consists of bilinear or trilinear elements (element type 404 or
808), giving the element type definition Element = "p:2" in the Equation section switches to
the Q2-Q1 approximation where the velocity approximation is enhanced by using hierarchic basis
functions.

• A hierarchic version of bubble-stabilized methods. The velocity approximation may also be enhanced
relative to the pressure by using elementwise bubble functions. The richness of velocity approximation
depends on how many bubble basis functions are constructed. For example, the set of basis functions
for the linear triangular and tetrahedral elements can be augmented with one interior bubble function
by giving the element type definition Element = "p:1 b:1" in the Equation section. Analogous
rectangular and brick elements may also be constructed, but our experience is that more than one
bubble function may be necessary to obtain stability, making this strategy less attractive. The Q2-
Q1 and P2-P1 approximation methods may generally require less computational work, especially for
three-dimensional problems where the number of interior bubble functions can be large (notice that in
the case of the time-dependent equations the interior degrees of freedom are not eliminated by using
the method of static condensation).

It is noted that other instabilities may arise when the flow is convection-dominated. A potentially useful
aspect of using the rotational formulation is that, as compared with the standard convection form, instabilities
relating to dominating convection may be more benign.

31.6 Utilizing splitting strategies by preconditioning
Discrete Navier–Stokes problems lead usually to large linear systems which are customarily solved with
iterative algorithms, in combination with preconditioning. The general preconditioning strategy used in
Elmer is based on the computation of incomplete factorizations. The performance of these preconditioners
is case-dependent and may not always be satisfactory.

More efficient solution algorithms for a particular problem can often be developed by exploiting the
block structure of the linear system. In the following such a solution strategy will be described. Since
the application of the preconditioner considered is based on solving certain simpler problems, the door is
opened to utilizing other efficient methods, such as multigrid methods for the discrete Poisson problems, in
connection with the solution of this more complicated problem.

The linearization and discretization of (31.2) leads to solving linear systems of the form[
A BT

B 0

] [
U
Π

]
=
[
F
0

]
, (31.6)

where A is the coefficient matrix for the velocity unknowns and B is the divergence matrix. The solution
strategy we consider is based on applying a preconditioned Krylov subspace method to (31.6). Given a
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previous iterate (Uk,Πk), the preconditioning is performed via solving approximately systems of the form A 0 0
B M 0
B H S

 Uk+1 − Uk
ψk+1

Πk+1 −Πk

 =

 F −AUk −BTΠk

−BUk
−BUk

 . (31.7)

Here M is the pressure mass matrix, while H and S are approximations of (scaled) Laplacian operators. In
practice the approximate solution of this block triangular system is generated by applying linear solvers to
systems with the coefficient matrices A, M and S. A crucial aspect of the methodology is that these sub-
sidiary problems can be considerably easier to solve than the original fully coupled system. They may also
be solved inexactly without impairing the performance of the preconditioner. Moreover, to our experience
the performance of the preconditioner is insensitive to discretization parameters and depends only mildly on
the Reynolds number, especially in the case of the evolutionary equations. The method is also suitable for
finding the steady solutions via using large time step sizes.

The outer iterative method applied to the primary system (31.6) is based on GCR, while the user can
specify linear solvers which are used to solve the subsidiary problems related to the preconditioning. It
should be noted that boundary conditions associated with the preconditioning operators are built-in, so the
user need not specify these constraints.

31.7 Restrictions
Currently, only homogeneous surface force conditions can be imposed on the boundary. If Q2-Q1 or P2-P1
approximation is used, the boundary conditions are set by employing the linear interpolation of boundary
data. As a result, optimal accuracy may not be realised. If the preconditioning is done via solving (31.7), the
time discretization must be done using BDF(1) and viscosity should be constant.

31.8 Keywords
Material material-id

Density Real
This keyword is used to define the density ρ.

Viscosity Real
This keyword is used to define the viscosity µ.

Solver solver-id

Equation String
This keyword declares the name of the equation.

Procedure File ”Stokes” ”StokesSolver”
The name of the file and procedure.

Variable String
This keyword is used to declare the name of the solution.

Variable DOFs Integer
The value of this keyword defines the number of unknown scalar fields and must hence equal to
d + 1 where d is the spatial dimensionality of the computational domain. The unknown scalar
fields are always numbered in such a way that the highest running number is associated with the
pressure solution.

Convective Logical
If the value ”False” is given, the convection term will be neglected so that the generalized
Stokes equations are solved.

Nonlinear Iteration Method String
This keyword defines the nonlinear iteration method. The default is the Newton method, and
Picard’s method can be chosen by giving the value ”Picard”.

CSC – IT Center for Science



31. Rotational form of the incompressible Navier–Stokes equations 151

Nonlinear System Convergence Tolerance Real
This keyword defines the stopping criterion for the nonlinear iteration. The nonlinear iteration is
terminated when the maximum number of nonlinear iterations is reached or when∥∥∥∥ [ F −A(Uk)Uk −BTΠk

−BUk

] ∥∥∥∥ < TOL

∥∥∥∥ [ F
0

] ∥∥∥∥,
where TOL is the value of this keyword.

Nonlinear System Max Iterations Integer
This keyword defines the maximum number of nonlinear iterations.

Nonlinear System Newton After Iterations Integer
If n is the value of this keyword, n Picard updates are performed before switching to Newton’s
method.

Nonlinear System Newton After Tolerance Real
If the norm of the nonlinear residual is smaller than the value of this keyword, then the nonlinear
iteration method is switched to Newton’s method.

Nonlinear System Relaxation Factor Real
If this keyword is used, then the new nonlinear iterate is taken to be

(1− λ)(Uk,Πk) + λ(Uk−1,Πk−1),

where λ is the value of this keyword.

Block Preconditioning Logical
If the block preconditioning via (31.7) is used, the value of this keyword must be ”True”.

Linear System Convergence Tolerance Real
When the block preconditioning is used, the value of this keyword defines the stopping criterion
for the outer GCR method applied to (31.6).

Linear System Max Iterations Integer
When the block preconditioning is used, this keyword is used to define the maximum number
of the outer GCR iterations applied to (31.6). It should be noted that the GCR iteration requires
that all previous iterates are saved. Especially in the case of time-accurate simulations the con-
vergence of the preconditioned GCR method is expected to be rapid so that saving all the iterates
is not expected be expensive. If the block preconditioning is used, the solver allocates computer
memory based on the value of this keyword, so giving an exaggerated value should be avoided.

Body Force bf-id

Body Force i Real
This keyword is used to define the i’s component of the body force vector~b.

Boundary Condition bc-id

Outflow boundary Logical
If the value ”True” is given, then the normal outflow boundary condition (31.5) will be used.
Note that this does not define the tangential boundary conditions which have to be specified
separately.

If the preconditioning is done via solving (31.7), three additional solver sections need to be written to define
linear solvers for subsidiary problems with the coefficient matrices A, M and S. In this connection special
equation names (given as values of Equation keyword) have to be used. These solver sections should be
written as follows.

Solver 1
Equation = "Velocity Preconditioning"
Procedure = "VelocityPrecond" "VelocityPrecond"
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Exec Solver = "before simulation"
Variable Output = False
Variable DOFs = $ d
Variable = "VelocityCorrection"
...

End

Solver 2
Equation = "Divergence Projection"
Procedure = "DivProjection" "DivProjection"
Exec Solver = "before simulation"
Variable Output = False
Variable DOFs = 1
Variable = "DivField"
...

End

Solver 3
Equation = "Pressure Preconditioning"
Procedure = "PressurePrecond" "PressurePrecond"
Exec Solver = "before simulation"
Variable Output = False
Variable DOFs = 1
Variable = "PressureCorrection"
...

End

The first solver section defines a linear solver for the preconditioning system with the velocity matrix A,
while the second solver section defines a solver for the system involving the pressure mass matrixM . Finally,
the third section is related to the system with the coefficient matrix S arising from the discretization of the
Laplacian operator. Each of these sections should also contain the standard keyword commands that actually
define the linear solver. Some examples of such definitions can be found in the tests subdirectory of the fem
module.
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Consistent splitting preconditioning of
incompressible flow equations

Module names: VelocityUpdate, ViscousCompressibility, PressureUpdate, CoupledNSUpdate
Module subroutines: VelocitySolver, CompressibilitySolver, PressureSolver, OptimalSolutionUpdate
Module authors: Mika Malinen
Document authors: Mika Malinen
Document edited: July 5th 2010

32.1 Introduction
The standard formulation of the incompressible Navier–Stokes equations requires that the velocity and pres-
sure fields are solved simultaneously. Popular sequential solution methods avoid the simultaneous solution
of the coupled equations by updating the velocity and pressure approximations separately. The obvious moti-
vation for developing such methods is that the decoupled solution procedures may employ simpler equations
for which effective solvers may already be available. However, a disadvantage of traditional sequential
solution methods is that they may not be optimally accurate.

Here an alternative incompressible flow solver which has the potential of being a cost-effective com-
promise between the standard fully coupled solvers and decoupled schemes is described. This method is
designed to solve the standard fully coupled discrete equations iteratively while splitting strategies are em-
ployed in the preconditioning of the iterative linear solver used. In this way, the robustness and the accuracy
associated with the fully coupled discretization can be retained naturally and simultaneously effective solvers
for simpler equations can be utilized in the solution of subproblems related to the preconditioning. The split-
ting strategy used here is based on the consistent splitting methodology [?] where the principal idea is to
replace the incompressibility constraint by a consistent pressure equation.

32.2 Solution strategy
The fully discrete version of the consistent splitting scheme based on the backward Euler time-integration
leads to solving linear systems which at each time level have the form A(Un) 0 0

B M 0
B H S

 Un+1

ψn+1

Πn+1

 =

 Fn −BTΠn

0
SΠn −BUn

 . (32.1)

Here A(Un) is the coefficient matrix for the velocity unknowns Un+1 and B is the divergence matrix. In
addition, the discrete problem for solving the auxiliary variable ψn+1 depends on a scaled pressure mass
matrix M , while H and S are approximations of (scaled) Laplacian operators associated with the problem
of finding the discrete pressure Πn+1.
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Now, instead of performing one update of the form (32.1), we may compute similar updates repeatedly
at each time level. The resulting corrections to the previous approximation can naturally be used as search
directions for a minimum residual method applied to the discrete version of the semi-implicit Navier–Stokes
problem [

A(Un) BT

B 0

] [
Un+1

Πn+1

]
=
[
Fn

0

]
. (32.2)

We thus come to the following algorithm for solving the fully coupled problem (32.2). Setting k = 0, define
Un+1
k = Un, with BUn = 0, and Πn+1

k = Πn. Then perform the following steps (cf. (32.1)):

1. Solve the velocity Ûn+1
k+1 from the preconditioning system

A(Un)Ûn+1
k+1 = Fn −BTΠn+1

k .

2. Solve the auxiliary variable ψn+1
k+1 from

Mψn+1
k+1 = −BÛn+1

k+1

3. Solve the pressure Π̂n+1
k+1 from the preconditioning system

SΠ̂n+1
k+1 = SΠn+1

k −BÛn+1
k+1 −Hψn+1

k+1 .

4. Update the solution as [
Un+1
k+1

Πn+1
k+1

]
=
[
Un+1
k

Πn+1
k

]
+ λk+1

[
Ûn+1
k+1 − Un+1

k

Π̂n+1
k+1 −Πn+1

k

]
,

where λk+1 is determined such that the 2-norm of the coupled system residual∥∥∥∥ [ Fn −A(Un)Un+1
k+1 −BTΠn+1

k+1

−BUn+1
k+1

] ∥∥∥∥ (32.3)

is minimal over the set of corrections spanned by all search directions used at the current time level
t = tn. If the residual norm satisfies∥∥∥∥ [ Fn −A(Un)Un+1

k+1 −BTΠn+1
k+1

−BUn+1
k+1

] ∥∥∥∥ < TOL

∥∥∥∥ [ Fn

0

] ∥∥∥∥, (32.4)

stop the iteration. Otherwise set k = k + 1 and go to Step 1.

It is noted that the GCR method is here adapted to generate the minimal residual update of Step 4.
Performing the minimal residual update requires that three subsidiary problems are first solved by applying
linear solvers to discrete systems with the coefficient matricesA,M , and S. The subproblem associated with
Step 2 is simple and can be solved efficiently using standard iterative methods in combination with the Jacobi
preconditioning. Effective multigrid methods for solving the Poisson problem associated with Step 3 have
also been developed, whereas the development of efficient solution strategies for the velocity preconditioning
system in Step 1 has proved to be tricky in the case of convection-dominated flows. However, for small time-
step sizes needed in time-accurate simulations this problem becomes easier to solve and then even standard
linear solvers may perform reasonably well. In spite of this, our experience is that the time-accuracy is not
required to make the fully coupled iteration effective, as the minimal residual iteration may converge rapidly
even when large time-step sizes are used.
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32.3 On Elmer implementation
Four separate Elmer modules have been developed to realize the fully coupled iteration of Section 32.2.
Also, four solver sections are needed in the solver input file. The functions of these sections correspond to
the Steps 1–4 of the algorithm given in Section 32.2. One “steady state iteration” of Elmer corresponds to
performing one preconditioned GCR iteration. Therefore, the keyword commands starting with the phrase
Steady State are here used to control the minimal residual iteration for the fully coupled problem (32.2).

The preconditioned solver considered offers an in-built strategy to handle the normal boundary condition
(31.5), which is typically imposed on the outflow boundary. Otherwise the normal velocity has to be speci-
fied. It is also noted that if the tangential velocity is not specified, then the condition of vanishing tangential
surface force is assumed.

32.4 Restrictions
Using the standard equal-order approximations for all the unknown fields may not lead to a stable method.
Ways to obtain stable methods have been described in Section 31.5. Using a stable pair of approximation
spaces for the velocity and pressure has also been found to have a crucial impact on the convergence of the
GCR iteration.

Currently, the time discretization must be done using BDF(1) and only homogeneous surface force con-
ditions can be imposed on the boundary. In addition, the boundary conditions are set by employing the linear
interpolation of boundary data, so in the case of Q2-Q1 or P2-P1 approximation optimal accuracy may not
be realized.

32.5 Keywords
The solver input file must contain at least four solver sections corresponding to the steps of the algorithm
given in Section 32.2. To enable the communication between the solvers, fixed variable names have been
adopted. Therefore, the four solver sections should be organized as follows.

Solver 1
Equation = "Velocity Preconditioning Solver"
Procedure = "VelocityUpdate" "VelocitySolver"
Variable = "VelocityTot"
Variable DOFs = $ d
Constant Bulk Matrix = True
Variable Output = False
...

End

Solver 2
Equation = "Divergence Projection"
Procedure = "ViscousCompressibility" "CompressibilitySolver"
Variable = "Divergence"
Variable DOFs = 1
Variable Output = False
Constant Bulk Matrix = True
...

End

Solver 3
Equation = "Pressure Preconditioning Solver"
Procedure = "PressureUpdate" "PressureSolver"
Variable = "TotalPressure"
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Variable DOFs = 1
Variable Output = False
...

End

Solver 4
Equation = "Coupled NS Update"
Procedure = "CoupledNSUpdate" "OptimalSolutionUpdate"
Variable = "Flow"
Variable DOFs = $ d + 1
Constant System = Logical True
Steady State Convergence Tolerance = $ TOL
Steady State Convergence Measure = String Linear System Residual

End

Note that the second section is related to solving the auxiliary variable ψn+1
k+1 . The first three sections above

should be supplemented by additional commands relating to linear solvers and convergence criteria. Since
the minimal residual iteration for the fully coupled linear system is here associated with the standard “steady
state” iteration of Elmer, the command

Steady State Convergence Tolerance = $ TOL

is accordingly used to define the stopping tolerance for the fully coupled solution. The norm of the coupled
system residual should indeed be the only criterion which Elmer solver uses for the convergence check.
Therefore, a mild steady state convergence criterion such as

Steady State Convergence Tolerance = 1.0

should be defined in other solver sections so that the solvers associated with the preconditioning do not have
an impact on the termination of the iteration. Other keywords that are specific to this solver or have special
meaning are summarized in the following.

Simulation

Steady State Max Iterations Integer
Here this keyword defines the maximum number of the fully coupled iterations to solve (32.2).
Computing the optimal update requires that all previous search directions are stored. Since the
sufficient amount of computer memory is allocated based on the value of this keyword, giving
an exaggerated value should be avoided. The solution algorithm usually converges rapidly, so
giving a value ∼ 10 may be large enough.

Material material-id

Density Real
This keyword is used to define the fluid density ρ.

Viscosity Real
This keyword is used to define the fluid viscosity µ.

Body Force bf-id

Force i Real
This keyword is used to define the i’s component of the body force vector (per unit volume).

Boundary Condition bc-id
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Outflow boundary Logical
If the value ”True” is given, then the normal outflow boundary condition (31.5) will be used.
Note that this does not define the tangential boundary conditions which have to be specified
separately.

Finally, if the solution to the generalized Stokes equations was sought by neglecting the convection term,
the command

Convective = Logical False

should be given in the solver sections related to performing the velocity preconditioning solve and the mini-
mal residual update.
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Nonphysical Mesh Adaptation Solver

Module name: NonphysicalMeshSolve
Module subroutines: NonphysicalMeshSolver
Module authors: Juha Ruokolainen, Peter Råback
Document authors: Juha Ruokolainen, Peter Råback
Document edited: 6th Sep 2010

33.1 Introduction
This solver is a variation of the MeshSolver for cases where the true mesh velocity is not of concern and
more liberties can be used in the mesh adaptation. Also it may be used as the mesh adaptation solver in
conjunction with MeshSolver. For example, in shape optimization of fluid-structure interaction problems
two mesh adaptation solvers may be needed simultaneously.

33.2 Theory
For the equation to be solved look at the theory section of the MeshSolver. In addition to that, also weak
ways of giving boundary conditions is implemented, namely

τ · ~n = kd+ f + c(d− d0) (33.1)

where k is a spring coefficient, f is a given force, and d0 is the target configuration. When c goes to infinity
this condition approaches the Dirichlet conditions.

33.3 Keywords
Solver solver id

Note that all the keywords related to linear solver (starting with Linear System) may be used in
this solver as well. They are defined elsewhere.

Procedure File "NonphysicalMeshSolve" "NonphysicalMeshSolver"
Name of the solver subroutine.

Variable String [-dofs 3 Mesh Deform]
The name of the displacement field. It should be different from Mesh Update in order to avoid
conflicts in its interpretation. Here we use the name Mesh Deform. The dimension should be
the same as that of the mesh.

Cumulative Displacements Logical
If the same solver is called multiple times then this flag controls whether the displacements are
added each time to the initial or previous mesh shape. The default is False.
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Moving Mesh Logical
This keywords relates to a mesh that is being moved by an outside solver such as the MeshSolver.
The default is True.

Target Field String
The name of the field d0 that is used as a target when setting the boundary conditions in a weak
manner.

Nodal Penalty Factor Real
A coeffcient that is used to set the displacements to that given by the target field in a soft manner.
This is constant for each node which results to problems in mesh consistancy.

Material mat id
The material section is used to give the material parameter values. The following material parameters
may be set in Navier equations.

Poisson Ratio Real
For isotropic materials Poisson ratio must be given with this keyword.

Youngs Modulus Real
The elastic modulus must be given with this keyword.

Boundary Condition bc id
The boundary condition section holds the parameter values for various boundary condition types.
Dirichlet boundary conditions may be set for all the primary field variables. The one related to Navier
equations are

Mesh Deform i Real
Dirichlet boundary condition for each displacement component i= 1, 2, 3.

Mesh Coefficient i Real
The spring coefficient related to the given coordinate direction, i= 1, 2, 3.

Mesh Force i Real
The right-hand-side of the mesh deformation equation, i= 1, 2, 3.

Mesh Normal Force Real
The right-hand-side of the mesh deformation equation in the normal direction.

Mesh Penalty Factor Real
When using the soft way of setting boundary conditions this value gives the weight function c.
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Rigid Mesh Transformation

Module name: RigidMeshMapper
Module subroutines: RigidMeshMapper
Module authors: Peter Råback
Document authors: Peter Råback
Document edited: 24.9.2009

34.1 Introduction
Sometimes there is a need to transform meshes without the need of generation a new mesh. The most
simple case is that of rigid mesh movement were some bodies move with prescribed rotations, translations
or scalings. Typically this could be a preprocessing step in a parametric study in some problem. Then this
solver may be used to perform the mesh transformation.

In addition to applying rigid transformations to bodies this solver includes also a relaxation parameter
which may be used to define which fraction of the mesh is taken from the suggested coordinates, and which
part from the original coordinates.

It should be noted that the usage of this solver is rather limited. It cannot handle cases where bodies
move in respect to one-another if there is a mesh between the bodies. Then the MeshUpdate solver should
be used instead.

34.2 Theory
Given original coordinate ~x0 the solver applied first a rotation, then a translation, and finally a scaling
operator such that the suggested new coordinates yield

~x1 = S(R(~x0 − ~o) + ~t) + ~o, (34.1)

where~t is the vector of translation, ~o is the origin, S the scaling matrix, andR is the rotation matrix. Rotation
may currently be performed only around one main axis.

Often it is desirable the rigid transformations are performed only for some objects and while some stay
fixed. It between the transformation degree should vary smoothly. To this aim the solver may be used to
compute a degree of transformation field from the Laplace’s equation

−∇ · (1 + c|∇Φ|)∇Φ = 0 (34.2)

where c is an optional coefficient which may be used to increase the mesh rigidity around singularities. As
boundary conditions for fixed objects Φ = 0 and for moving objects Φ = 1.

When the rigid mesh mapping is applied together with the relaxation the end result is

d~x = Φ(~x1 − ~x0) . (34.3)
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34.3 Keywords
Solver solver id

Equation String [RigidMeshMapper]
The name of the equation.

Procedure File "RigidMeshMapper" "RigidMeshMapper"
The name of the procedure.

Variable String
Optionally the solver may be used to compute a relaxation field that is on the interval [0, 1].
The final displacement are then obtained as a product of the field and the suggested rigid body
motion. The name is arbitrary since it is not referenced elsewhere.

Use Original Coordinates Logical
This keyword applied only to cases where the solver is called repeatedly. With this keyword
being true the mesh transformation is always applied to the original coordinates. Otherwise the
mesh transformation is performed recursively.

Body Force bf id
The mesh transformations are defined in this section.

Mesh Translate Real [txtytz]
The translational vector. May also be given individually for each component, i = 1, 2, 3.

Mesh Rotate Real [αxαyαz]
The rotation around main coordinate directions. May also be given individually for each com-
ponent, i = 1, 2, 3.

Mesh Scale Real [sxsysz]
The scaling around of main directions. May also be given individually for each component,
i = 1, 2, 3.

Mesh Origin Real [oxoyoz]
The origin used in rotation and scaling.

Mesh Displace i Real
An alternative for giving the mesh deformation in rigid body motion. Give separately for each
component, i = 1, 2, 3. This is a local field that may vary between the nodes while the rigid
body motion may only depend on global variables such as time.

Mesh Relax Real
The relaxation factor determining which amount of the coordinate transformation is taken into
account. This is a local field which may depend on coordinate values whereas the other above
keywords must be constant for each body force.

Boundary Condition bc id
The boundary conditions that define the moving and fixed walls.

Moving Boundary Logical
Gets relaxation field multiplied by one.

Fixed Boundary Logical
Gets relaxation field multiplied by zero.
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Linear Constraints

Module name: included in solver (SolverUtils)
Module subroutines: SolveWithLinearRestriction
Module authors: Mika Juntunen
Document authors: Mika Juntunen
Document edited: August 5th 2003

35.1 Introduction
This subroutine allows user to solve problems with linear constraints. Here constraints are forced with
Lagrange multipliers. This method, however, does not always lead to a well-posed problem. Conditions
that ensure a (unique) solution are excluded here, but the conditions are found in many books (check for
example [1]).

35.2 Theory
The problem at hand is

min
x

xTAx− xT f (35.1)

Let’s assume that we can solve this. Now we also want that the solution solves the system Bx = g. This
gives constraints to our solution. The rank of B should be less or equal to the rank of A. Loosely speaking,
the number of rows in B should be less or equal to the number of rows in A. The method of Lagrange
multipliers fixes these two equations together and gives a new functional to minimize.

min
x

xTAx− xT f + λT (Bx− g) (35.2)

If A is symmetric, then simple variational approach leads to solving x out of system(
A BT

B 0

)(
x
λ

)
=
(
f
g

)
(35.3)

Symmetry of A is not always needed, but then more powerful methods have to be used to get to the above
system.

35.3 Limitations
• General usage of the subroutine

This subroutine can not be used by just adding keywords to solver input file. You must somehow
create the constraint matrix and then call for SolveWithLinearRestriction in your own subroutine or
function. The reader is encouraged to check for details in ElmerTutorials.
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• EMatrix-field
The EMatrix-field of the solved system matrix is used passing constraint matrix to SolveWithLinear-
Restriction. This will be a problem if some other function or subroutine tries to use the EMatrix-field.
EMatrix-field of the constraint-matrix is internally used by SolveWithLinearRestriction and should
therefor be left alone.

• Exported Multipliers
The length of the vector that holds the multipliers is limited to be a multiply of the number of nodes
in mesh. This means that the vector usually has extra entries. These entries are set to zero. This leads
to problems in extracting the correct values from the result file. Also post processing with ElmerPost
is at least tricky.

• Parallel solving is not yet implemented.

35.4 Keywords
Solver solver-id

Export Lagrange Multiplier Logical
If the multiplier has some physical meaning, you can save it to result file and to post file. This
feature has certain drawbacks, check subsection Limitations. Default is False.

Lagrange Multiplier Name String
The name you want to call the exported multipliers. This keyword has no meaning if the previous
keyword is set to False. Default name is LagrangeMultiplier.

Bibliography
[1] V. Girault and P.A. Raviart. Finite element methods for Navier-Stokes equations. Springer-Verlag, New

York, Berlin, Heidelberg, 1986.
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Outlet Boundary Condition for Arterial
Flow Simulations

Module name: ArteryOutlet
Module subroutines: OutletCompute, OutletInit, OutletPres, OutletdX, OutletdY
Module authors: Esko Järvinen, Mikko Lyly, Peter Råback
Document authors: Esko Järvinen
Document created: April 28th 2006
Document edited: April 28th 2006

36.1 Introduction
Arterial elasticity is a fundamental determinant of blood flow dynamics in arteries, such as the aorta and
its daughter vessel, that face the largest displacements and which takes care of the cushioning of the stroke
volume. Simulation of such a phenomenon requires simultaneous solving of the equations governing both
the fluid flow and wall elasticity. To be able to perform accurate fluid-strucrure interaction (FSI) simulations,
only a segment of the circulatory system can be studied at a time. For these artificially truncated segments,
which are naturally unbounded domains and in interaction with the rest of the circulation domain, one should
construct in the numerical models boundary conditions which do not exhibit any unphysical behaviour,
which operates transparently, and are also capable to transport a sufficient amount of information over the
boundary.

A natural boundary condition at the outlet of a numerical FSI flow model of an artery is not a proper
choice because it does not exhibit enough correct physiological behavior of the flow, and from the point of
view of numerical approximation, it causes non-physiological reflections of the wave at the boundary. If
measured data of both the pressure (or velocity) and the wall displacement at the outlet boundary are not
available, the only way to get the outlet boundary of a higher order, 2D or 3D model sufficiently specified is
to combine the model with some lower order model, such as a 1D or lumped model.

In order to get the outlet of the arterial FSI model to behave transparently in such cases when only
forward travelling waves are considered, a simple characteristic equation of the of the one dimensional FSI
model can be combined with the higher order model.

36.2 Theory
The conservation equations for a flow in an elastic artery in one dimension may be expressed as

∂A
∂t + ∂Q

∂x = 0

∂Q
∂t + ∂

∂x (Q
2

A ) + A
ρ
∂p
∂x = 0,

(36.1)
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where Q is the volume flow, A the cross section area of the artery, p is the pressure and x is the axial
coordinate [3]. In order to get the system (36.1) close, an equation relating the area A to the pressure
p = p(A) is derived applying the theory of thin shell structures. Assuming a cylindrical shell, and neglecting
the rotation on the shell cut plane, and the movements of the structure in the axial and circumferential
directions, as well as applying the Kirchhoff-Love assumption, the energy balance equations is reduced to

E h3

12(1− ν2)
dR

(4) +
E h

(1− ν2)
1

Rm
2 dR = p, (36.2)

where Rm is the radius to the midplane of the wall, E, ν and dR are the Youngs modulus, the Poisson
ratio and the radial displacement of wall, respectively. Assuming that the first term on the left side in the
equation (36.2) is much smaller than the second term, we can give the pressure-area relation in the form

p = pext + β(
√
A−

√
A0), β =

√
πhE

(1− ν2)A0
. (36.3)

The pressure is scaled to be equal to external pressure pext with corresponding reference artery cross
sections area A0.

The equations (36.1) and (36.3) form a closed system for the simulations of flow in an elastic tubes. The
equations may be written in conservative form which is strictly hyperbolic with two distinct real eigenvalues

λ1,2 = ū ± c, where ū = Q/A is the average axial velocity, c =
√

(A/ρf )(∂p/∂A) =
√
β
√
A/(2ρf ) is

the speed of sound, and ρf is the density of blood. The system can be further decomposed into a set of the
equations for the characteristic variables Wi, which are the components of the vector W = T−1U (∂W∂U =
T−1) , U = [A,Q]T [2]. These equations are

∂Wi

∂t
+ λi

∂Wi

∂x
= 0, (36.4)

and the characteristic variables are

W1,2 =
Q

A
± 2

√
2
ρf

+ β
√
A.

When considering a pulse propagation in a straight, infinitely long homogeneous conduit, without any
bifurcations or other objects which might cause reflections of the pulse, i.e. any backward travelling waves
does not exists, the computations can be done using only the first of equations in (36.4), i.e.

∂W1(U)
∂t

+ λ1(U)
∂W1(U)
∂x

= 0.

This equation is solved in this Elmer outlet bondary condition for arterial flow simulations solver. The
connection of the one dimensional model to the test models at the their outlets is done applying the following
coupling [1]

 dR− = dR+

σ− = p+

W1 = g1(A−, Q−, p−),

where dR and σ are radial displacement of the artery wall and fluid traction, respectively. The superscript
’–’ denotes the values in the higher order models, and superscript ’+’ to the values in the 1D model.

36.3 Keywords

Keywords of FlowSolve
Initial Condition ic id

For making the initial guess for the characteristic variable W1
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Wnodal Variable Coordinate
Real Procedure "ArteryOutlet" "OutletInit"

Material mat id
Material properties for the one dimensional section.

Density Real
Density of blood

Artery Wall Youngs Modulus Real
Young’s modulus of the artery

Artery Radius Real
Radius of the artery to the midplane of the artery wall

Artery Wall Thickness Real
Wall thichness of the artery

Artery Poisson Ratio Real
Poisson ration of the artery

Solver solver id
Keywords for the one dimensional solver. Note that all the keywords related to linear solver (starting
with Linear System) may be used in this solver as well. They are defined elsewhere.

Equation String [Artery Outlet Solver]

Variable [Wnodal]
The variable which is solved

Variable DOFs [1]

Procedure File "ArteryOutlet" "OutletCompute"
The name of the file and the subroutine

Equation eq id
The equation section is used to define a set of equations for a body or set of bodies

Artery Outlet Solver Logical [True]
If set True, the solver is used. The name of the solver must match with the name in the Solver
section

Boundary Condition boundary id
The pressure of the given coordinate direction i at the artery outlet of the higher order model is set to
correspond the value given by the 1D model.

Pressure i Variable Time
Real Procedure "ArteryOutlet" "OutletPres"

The diameter of the artery in the appropriate direction at the outlet of the higher order model is set to
correspond the value given by the outlet boundary codition solver. The subroutines OutletdX and
OutletdY are located in the module ArteryOutlet

Displacement i Variable Time
Real Procedure "./ArteryOutlet" "OutletdX"

This is the inlet boundary of the one dimensional section which is coupled with both, the fluid and the
solid outlet boundary of the higher order model

Fluid Coupling With Boundary Integer

Structure Coupling With Boundary Integer
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Figure 36.1: An example of the model results: pressure pulse prapagation in a 2D axisymmetric model
combined with an 1D model.

Bibliography
[1] L. Formaggia, J.F. Gerbeau, F. Nobile, and A. Quarteroni. Numerical treatment of defective boundary

conditions for the navier-stokes equations. SIAM J. Numer. Anal, 40:376–401, 2002.

[2] E. Godlewski and P.-A. Raviart. Numerical Approximation of Hyperbolic Systems of Concervation Laws.
Springer, 1996.

[3] T. J. R. Hughes and J. Lubliner. On the one-dimensional theory of blood flow in the large vessels.
Mathematical Biosciences, 19:161–170, 1973.

CSC – IT Center for Science



Model 37

Streamline Computation

Module name: StreamSolver
Module subroutines: StreamSolver
Module authors: Mika Juntunen
Document authors: Mika Juntunen
Document edited: July 30th 2003

37.1 Introduction
Streamline is a line in flow whose tangent is parallel to velocity field ~u of the flow in every point ~x. It should
be noted that the path of material is generally not the same as streamlines. There is also third set of closely
related lines, namely streak lines. On certain streak line lie all those flow elements that at some earlier instant
passed through certain point in domain. Of course, the streak lines are generally different than streamlines
but when the flow is steady all three set of lines coincide.

Streamlines are mainly used in providing a picture of the flow field. Drawing streamlines so that neigh-
bouring streamlines differ by the same amount, gives a picture where direction and magnitude change of
flow are clearly prescribed.

37.2 Theory
We are restricted here to the incompressible, steady flow in 2D geometry. The geometry may be 3D, but it
must effectively be 2D as in axis symmetric geometry.

In 2D cartesian geometry stream function ψ is defined

u =
∂ψ

∂y
, v = −∂ψ

∂x
. (37.1)

Here the geometry is (x, y) and the corresponding flow is ~u = (u, v). Let Ω be the domain of the flow and
~v a test function for the flow. Definition (37.1) leads to finite element approximation∫

Ω

∇ψ · ~v dΩ =
∫

Ω

~u⊥ · ~v dΩ (37.2)

In axis symmetric geometry the mass conservation calculated in a diffenrent way. This leads to following
definition for stream function.

u =
1
r

∂ψ

∂r
, v = −1

r

∂ψ

∂z
(37.3)

where the cylinderical coordinates are (z, r, φ), velocity components are (u, v, w) and axis of symmetry is
z i.e. r = 0. This function is sometimes called the Stokes stream function and it is not as informative as the
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stream function in cartesian case. Of course the finite element approximation is a bit different.∫
Ω

∇ψ · ~v dΩ =
∫

Ω

~u⊥ · ~vr dΩ (37.4)

Here the φ component of the flow is excluded.
From definitions (37.1) and (37.3) it is apparent that stream function is constant along the streamlines.

So drawing the contours of stream function gives the streamlines.

37.3 Limitations
Some limitations of the current implementation:

• The flow field is asumed to be incompressible.

• There is no dependency on time. Solver can be used in transient cases, but it only produces the
streamlines of the current flow field as if it was steady.

• Only 2D cartesian and axis symetric coordinate systems are implemented.

• Solver gets the velocity field from user defined variable. In cartesian case it assumes that first degree
of freedom is the x-component and the second is the y-component of the velocity. In axis symmetric
case it assumes that the first degree of freedom is the r-component and the second is the z-component
of the velocity field.

• User can define the node whose value is first set to zero. This shouldn’t have affect on results if the
normal stream function is used in cartesian coordinates and Stokes stream function in axis symmetric
coordinates. However, if used stream function is forced to something else, the position of the first node
usually has a large effect on results. This is because the mass conservation is calculated differently.

37.4 Keywords
Simulation

Coordinate System String
The coordinate system should be set to be one of the following options: Cartesian 2D or Axi
Symmetric.

Solver solver-id
All the keywords beginning Linear System can be used. They are explained elsewhere.

Equation String
The name you want to give to the solver, for example StreamSolver.

Procedure File "StreamSolver" "StreamSolver"
The name of the file and subroutine.

Variable String
The name you want to call the solution, for example StreamFunction.

Variable DOFs Integer 1
The degree of freedom of the variable. Stream function is scalar so this must be set to 1.

Stream Function Velocity Variable String
The name of the velocity field variable. FlowSolvers solution is called Flow Solution and
this is also the default value.

Stream Function First Node Integer
Number of the node that is first set to zero. Non-positive values are set to 1 and too large values
are set to largest possible i.e. ’the last node’. Default is 1.
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Stream Function Shifting Logical
Shift the smallest value to zero. Default is True.

Stream Function Scaling Logical
Scale largest absolut value to 1. Default is False.

Stokes Stream Function Logical
This keyword forces the stream function type regardles of the coordinate system. If the coordi-
nate system is axis symmetric, then the default is True, else the default is False.
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Flux Computation

Module name: FluxSolver
Module subroutines: FluxSolver
Module authors: Juha Ruokolainen, Peter Råback
Document authors: Peter Råback
Document edited: 21.6.2007

38.1 Introduction
This module is used to calculate the fluxes resulting usually from poisson kind of equations. These include,
for example, the heat equation, the electrostatic equation, and the pressure equation for Darcy’s flow. There
are also flux computation subroutines that are built in the solvers but this provides a generic approach that
should be easy to combine with most solvers.

38.2 Theory
Given a potential φ it is often interesting to know its gradient or the resulting flux. The gradient may be
compyted from ∇φ. The flux resulting from a potential field is assumed to be proportional to the gradi-
ent. The proportinality coefficient c may be conductivity, permeability, diffusivity etc. depending on the
application field. It may be a scalar or a tensor of second kind. The flux may now be expressed as

~q = −c∇φ. (38.1)

For heat equation the potential would this be temperature and the conductivity would be the heat conductivity.
The magnitude of a flux (or gradient) may be defined as

|q| = |~q · ~q| = |c∇φ · c∇φ| (38.2)

The computation of magnitude may be done before or after the numerical discretization giving result to
slightly different results.

38.3 Implementation issues
The flux may be computed in many ways. Often for visualization purposes it suffices to take some nodal
average of the element-wise computed fluxes. The most consistant method for flux computation is, however,
using the finite element method to solve the equation (41.1). The Galerkin method creates a diagonally dom-
inated matrix equation that may be computed easily with iterative methods even with poor preconditioners.

The flux computation may be done component-wise so that for each component qi, where i = 1 . . . dim,
is solved separately. This saves a significant amount of memory even though it slightly complicates the
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implementation. In the solver it is also possible to choose just one component as could be sometimes
desirable.

The main limitation of the current version is that it does not take into account any boundary conditions.
Therefore if there is a internal boundary over which the flux is not continous the calculated value does not
make sense.

38.4 Keywords
Solver solver id

Equation String Flux Solver

Procedure File "FluxSolver" "FluxSolver"

Calculate Flux Logical
This flag controls the computation of fluxes. By default is False but its turned True if no other
flag is not.

Calculate Flux Abs Logical
In conjuction with flux computation this flag may be used to compute the absolute value of the
flux vector. It requires that the previous flag is active.

Calculate Flux Magnitude Logical
This flag computed the magnitude of the vector field. Basically it is the same in continous level
as the previous but this requires less memory and solver the matrix equation only once. The
downside is that even negative values may be introduced.

Calculate Grad Logical
This flag turns on gradient computation. The default is False.

Calculate Grad Abs Logical
In conjuction with gradient computation this flag may be used to compute the absolute value of
the flux vector. It requires that the previous flag is active.

Calculate Grad Magnitude Logical
This flag computed the magnitude of the vector field. Basically it is the same in continous level
as the previous but this requires less memory and solver the matrix equation only once. The
downside is that even negative values may be introduced.

Enforce Positive Magnitude Logical
If this is active then the negative values of the computed magnitude fields are a posteriori set to
zero.

Target Variable String "Temperature"
This gives the name of the potential variable used to compute the gradient. By default the variable
is Temperature.

Flux Coefficient String "Heat Conductivity"
This gives the name of the potential variable used to compute the gradient. By default the coef-
ficient is Heat Conductivity.

Flux Component Integer
If only one component of the flux need to be computed it may be given by this keyword. If the
keyword is not specified the solver computes all the components of the flux.

The solver is easily solved even without preconditioning. Fox example, the following linear system
control may be applied.

Linear System Solver "Iterative"

Linear System Iterative Method "BiCGStab"

Linear System Preconditioning None

Linear System Max Iterations 500

Linear System Convergence Tolerance 1.0e-10
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Vorticity Computation

Module name: VorticitySolver
Module subroutines: VorticitySolver
Module authors: Peter Råback
Document authors: Peter Råback
Document edited: 14.2.2008

39.1 Introduction
This module is used to calculate the vorticity of vector fields. Vorticity may be of interest mainly in the
postprocessing of flow fields or electromagnetic fields.

39.2 Theory
The vorticity ~w of a vector field ~v is obtained simply from the curl of the field,

~w = ∇× ~v. (39.1)

Component-wise the equations for the vorticity read

wx =
∂vz
∂y

− ∂vy
∂z

(39.2)

wy =
∂vx
∂z

− ∂vz
∂x

(39.3)

wz =
∂vy
∂x

− ∂vx
∂y

. (39.4)

Thus, all three components exist only in 3D while in 2D and axisymmetric cases only the z-component is
present

The most consist ant method for computing the vorticity in conjunction with the finite elements is to
solve the equations (39.4) using the Galerkin method. The resulting matrix is diagonally dominated and may
be computed easily with iterative methods even with poor preconditioners. In 3D the vorticity computation
may be done component-wise so that each component wi, where i = 1, 2, 3, is solved separately. This saves
some memory and may also save in the overall time consumption. If only one component is desired in the
3D computations then the z-component is computed.

39.3 Keywords
Solver solver id
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Equation String Vorticity Solver

Procedure File "VorticitySolver" "VorticitySolver"

Vorticity Variable String "Velocity"
This gives the name of the vector variable used to compute the vorticity. By default the variable
is Velocity.

Constant Bulk Matrix Logical
This keyword may be used to activate the saving of the stiffness matrix if the same solver is
called repeatedly. The stiffness matrix depends only on geometric information and is hence the
same if the geometry is unaltered.

The following keywords are not usually needed as they are set by the initialization procedure of the
solver.

Variable String "-nooutput tempvar"
The variable is usually only used to allocate the corresponding matrix. Therefore output is not
required unless the solver is only used to compute one component.

Vorticity Result Variable String f1
This string gives the name of the variable that is known to be at disposal for saving the results.
This variable is allocated with the following keyword.

Exported Variable 1 String "fl[Vorticity:3]"
This command is used to allocate space for the result and at the same time the components may
be renamed to be later identified as a vector in ElmerPost. If only one component of the flux is
computed this keyword is obsolete.

The solver is easily solved even without preconditioning. Fox example, the following linear system
control may be applied.

Linear System Solver "Iterative"

Linear System Iterative Method "cg"

Linear System Preconditioning None

Linear System Max Iterations 500

Linear System Convergence Tolerance 1.0e-10
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Divergence Computation

Module name: DivergenceSolver
Module subroutines: DivergenceSolver
Module authors: Peter Råback
Document authors: Peter Råback
Document edited: 20.4.2010

40.1 Introduction
This module is used to calculate the divergence of vector fields. Divergence may be of interest mainly in the
postprocessing to check how well incompressibility constraints are honored.

40.2 Theory
The divergence d of a vector field ~v is obtained simply from

d = ∇ · ~v. (40.1)

The most consist ant method for computing the divergence in conjunction with the finite elements is to
solve the equation (40.1) using the Galerkin method. The resulting matrix is diagonally dominated and may
be computed easily with iterative methods even with poor preconditioners.

40.3 Keywords
Solver solver id

Equation String Divergence Solver

Procedure File "DivergenceSolver" "DivergenceSolver"

Divergence Variable String "Velocity"
This gives the name of the vector variable used to compute the divergence. By default the variable
is Velocity.

Constant Bulk Matrix Logical
This keyword may be used to activate the saving of the stiffness matrix if the same solver is
called repeatedly. The stiffness matrix depends only on geometric information and is hence the
same if the geometry is unaltered.

The following keywords are not usually needed as they are set by the initialization procedure of the
solver.
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Variable String
By default the variable is obtained from the divergence variable by adding a prefix Div to the
field name. Naturally the name of the resulting field may also be given as desired.

The solver is easily solved even without preconditioning. Fox example, the following linear system
control may be applied.

Linear System Solver "Iterative"

Linear System Iterative Method "cg"

Linear System Preconditioning None

Linear System Max Iterations 500

Linear System Convergence Tolerance 1.0e-10
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Scalar Potential Resulting to a Given
Flux

Module name: ScalarPotentialSolver
Module subroutines: ScalarPotentialSolver
Module authors: Peter Råback
Document authors: Peter Råback
Document edited: 15.2.2008

41.1 Introduction
This module is an auxiliary solver that may be used to compute the scalar potential that results to a given
flux. The flux is assumed to be an vector field resulting from some computation. This solver is the dual of
the FluxSolver. Computing first the flux of a given potential and thereafter resolving for the potential
that creates the flux should give approximately the original potential.

41.2 Theory
The flux resulting from a potential field is assumed to be proportional to the gradient of the field, φ. The
proportionality factor is here called conductivity, c. The flux may therefore be expressed as

q = −c∇φ. (41.1)

For heat equation the potential would this be temperature and the conductivity would be the heat conductivity.
This solver solves the equation in the reverse form, i.e. given the flux solver for the potential. In the

weak formulation this is solved so that the test function is the gradient of the shape function. This results to
the standard discretization of the Poisson equation.

The potential is not defined uniquely unless the level is fixed at least at one point. Therefore the user
should set a Dirichlet condition at least at one node.

41.3 Keywords
Solver solver id

Equation String ScalarPotentialSolver

Procedure File "ScalarPotentialSolver" "ScalarPotentialSolver"

Variable String "Scalar Potential"
The desired name of the resulting scalar field.
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Flux Variable String
This gives the name of the flux variable used to compute the source term. Note that this must be
the name of a vector field such as Velocity.

Flux Coefficient String
This gives the name of the coefficient used in the computation of the flux. For example, in
thermal analysis it would be Heat Conductivity. If an non-existing material parameter is
given the coefficient will be assumed to be one, i.e. c = 1.

The equation is a Poisson type of equation and defaults for it are set to be cg+ILU0. If these do not
suffice, other linear system options should be defined.

Boundary Condition bc id

Scalar Potential Real
The defined field variable must be set to be zero at least at one point.

Target Nodes Integer
The user may also define a target node on-the-fly at which the condition is set.
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Fluidic Force

Module name: FluidicForce
Module subroutines: ForceCompute
Module authors: Juha Ruokolainen, Antti Pursula
Document authors: Antti Pursula
Document edited: Feb 28th 2005

42.1 Introduction
This module is used to calculate the force that a fluid flow induces on a surface. The fluidic force can
be divided into two main components: force due to pressure and viscous drag force. The fluid can be
compressible or incompressible and also non-Newtonian with the same limitations than there are in the
Elmer Navier-Stokes Equation solver. The force calculation is based on a flow solution (velocity components
and pressure) which has to present when calling the procedure. Also the torque with respect to a given point
can be requested.

42.2 Theory
The force due to fluid is calculated as a product of the stress tensor and normal vector integrated over the
surface

~F =
∫
S

σ · ~n dS. (42.1)

The stress tensor is

σ = 2µε− 2
3
µ(∇ · ~u)I − pI, (42.2)

where µ is the viscosity, ~u is the velocity, p is the pressure, I the unit tensor and ε the linearized strain rate
tensor, i.e.

εij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (42.3)

The torque about a point ~a is given by
~τ = (~r − ~a)× ~F (~r), (42.4)

where ~r is the position vector.
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42.3 Additional output
There is also a feature for saving the tangential component of the surface force i.e. the shear stress elemen-
twise on the boundaries. The shear stress output is written on disk in a file which contains three columns:
1) the value of the shear stress, 2 and 3) the corresponding x and y coordinates. The shear stress is saved
on all boundaries where fluidic force computation is requested. This feature is implemented only for 1D-
boundaries of 2D-geometries.

42.4 Keywords
Solver solver id

Equation String Fluidic Force

Procedure File "FluidicForce" "ForceCompute"

Calculate Viscous Force Logical [True]
Setting this flag to false disables the viscous drag force, and only the surface integral of pressure
is calculated.

Sum Forces Logical [False]
By default the solver calculates the fluidic force by boundaries. Setting this flag to True apllies
summing of each individual boundary force in to a resultant force which is the only force vector
in output.

Shear Stress Output Logical [False]
Setting this flag to True activates writing shear stress values on disk.

Shear Stress Output File String [shearstress.dat]
Defines the name of the shear stress file.

Velocity Field Name String
The name of the velocity field variable. This keyword may be necessary if some other flow
solver than the built-in Navier-Stokes solver of Elmer is used. Normally this keyword should be
omitted.

Material mat id

Viscosity Real

Boundary Condition bc id

Calculate Fluidic Force Logical [True]
The fluidic force is calculated for the surfaces where this flag is set to true.

Moment About 1,2,3 Real
Coordinates for the point on which the torque is returned.
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Electrostatic force

Module name: ElectricForce
Module subroutines: StatElecForce
Module authors: Antti Pursula
Document authors: Antti Pursula
Document edited: February 7th 2003

43.1 Introduction
This solver calculates the electrostatic force acting on a surface. The calculation is based on an electrostatic
potential which can be solved by the electrostatic solver (see Model 9 of this Manual).

43.2 Theory
The force is calculated by integrating the electrostatic Maxwell stress tensor [1] over the specified surface.
Using the stress tensor T the total force on the surface S can be expressed as

~F =
∫
S

T · d~S. (43.1)

The components of the Maxwell stress tensor for linear medium are

Tij = −DiEj +
1
2
δij ~D · ~E, (43.2)

where electric field ~E and electric displacement field ~D are obtained from the electric potential Φ

~E = −∇Φ, (43.3)

and
~D = −ε0εr∇Φ, (43.4)

where ε0 is the permittivity of vacuum and εr is the relative permittivity of the material, which can be a
tensor.

43.3 Keywords
Constants

Permittivity Of Vacuum Real [8.8542e-12]
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Solver solver id

Equation String Electric Force
The name of the equation. Not necessary.

Procedure File "ElectricForce" "StatElecForce"

Exec Solver String After Timestep
Often it is not necessary to calculate force until solution is converged.

Material mat id

Relative Permittivity Real

Boundary Condition bc id

Calculate Electric Force Logical True
This keyword marks the boundaries where force is calculated.

Bibliography
[1] J. Vanderlinde. Classical electromagnetic theory. John Wiley & Sons, 1993.
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Save Data

Module name: SaveData
Module subroutines: SaveScalars, SaveLine, SaveMaterials, SaveBoundaryValues
Module authors: Peter Råback, Ville Savolainen, Thomas Zwinger
Document authors: Peter Råback
Document created: Oct 3rd 2002
Document updated: January 8th 2008

44.1 Introduction
This module does not include any physical models per se. The module includes utilities for computing
derived quantities and saving scalars as well as lines in matrix format. Scalars are saved with the subroutine
SaveScalars and lines with the subroutine SaveLine, correspondingly. The results are easily then
utilized by MatLab, Excel or any other program that can read ASCII data. In addition to the number values
also an additional file with the suffix .name is saved. It tells what variables are at each column.

In addition there is a utility called SaveMaterials that may be used to create additional field variables
from the material parameters. A similar procedure SaveBoundaryValues stores parameters defined on
boundaries as variables for the whole mesh. This can be of help if a boundary condition that is not directly
accessible from the variables (like a normal component of a vector field) should be evaluated in the post-
processing step.

44.2 Theory
One mildly theoretical problem in saving data comes from the fact that often the data should be saved in
points or lines that were not a priori defined.

If there are relatively few points the dummy algorithm where each element is checked for including the
node may be used. For the lines, however, this algorithm might become quite expensive as there may be
many points that constitute the line. Therefore we only look for intersections of element faces and the lines.
Each element face is divided into triangles. The triangle has points ~e1, ~e2 and ~e3. The line is drawn between
points ~r1 and ~r2. Therefore the line goes through the point only if

~r1 + a(~r2 − ~r1) = ~e1 + b(~e2 − ~e1) + c(~e3 − ~e1) (44.1)

has a solution for which 0 ≤ a, b, c ≤ 1. This results to a matrix equationr2x − r1x e1x − e2x e1x − e3x
r2y − r1y e1y − e2y e1y − e3y
r2z − r1z e1z − e2z e1z − e3z

ab
c

 =

e1x − r1x
e1y − r1y
e1z − r1z

 (44.2)
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which may be easily solved with standard methods linear algebra. Because the face element is a triangle
there is an additional condition that b+ c ≤ 1.

When saving statistical information there are two possibilities. We may use normal number statistics
where each node is given an equal weight. Then, for example the mean becomes,

< f >=
∑n
i=1 fi
n

. (44.3)

The other possibility is to treat the variable as a continuous function and compute the statistical values as
averages over the domain. Now the mean is

< f >=
∫
f dΩ∫
dΩ

. (44.4)

In addition to the mean we may compute the mean deviation, < |f− < f > | >.and the variance δf =√
< f2 > − < f >2.

It is possible to compute energy type of lumped quantities by integrating over the domain. The energy
of the field f resulting from a diffusion equation is

Ediff =
1
2

∫
Ω

∇f · c∇f dΩ, (44.5)

where c may a tensor or a scalar. Kinetic energy related to convection is of type

Econ =
1
2

∫
Ω

c~v · ~v dΩ, (44.6)

and potential type of energy

Epot =
∫

Ω

cf dΩ. (44.7)

Sometimes it may be interesting to compute the fluxes through surfaces. The values may be used in
evaluating the accuracy of the results – what goes in should in steady state also come out. There are two
different fluxes that may be computed. For convective field the flux is of type

Fcon =
∫

Γ

c~v · ~n dΓ, (44.8)

where ~n is the surface normal. Diffusive fluxes may be computed from

Fdiff =
∫

Γ

c∇f · ~n dΓ, (44.9)

where c may also be a tensor.

44.3 Keywords

Keywords of solver SaveScalars
Solver solver id

Procedure File "SaveData" "SaveScalars"

Filename String
Name of the file where results are to be saved, the default is scalars.dat.

Scalars Prefix String
Save constants starting with this prefix. The default is res:.
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Variable i String
The names of the variables to be saved. There can be up to 99 variables. In addition to field
variables there are some special variables. The scalar variables. e.g. Time, are saved as is.
There are also variables CPU Time and CPU Memory that may be used to save execution
details.

Target Variable i String
This is an optional keyword that for each entry computed by the subroutine may give an alter-
native name that is placed as a proper variable in the model. This variable may then be used
similarly to time in functional expressions. Note that if the operator creates several output val-
ues the numbering of this is not the same as that of Variables. So check the output file for
correct entries when in doubt.

Save Points(n) Integer
Save the specified degrees of freedom in the n nodes specified.

Save Coordinates(n,DIM) Real
Save the degrees of freedom in the nodes nearest to the given n coordinates.

Exact Coordinates Logical
When this keyword is true the coordinates will be looked in an exact manner. Then the degrees
of freedom are linear combinations of the node values of the element that the point belongs to.

Moving Mesh Logical
If this parameter is True the saved points will be defined every time the subroutine is visited.
The default is False.

File Append Logical
If the results from consecutive rounds should be appended to the file this flag should be set to
True. The default is False.

Show Norm Index Integer
The user may choose to output one value of the results as the norm of the solver in a similar
output syntax as ComputeChange shows its norms. This is of course nor a real norm but may
be used in monitoring desired convergence measures in ElmerGUI, for example. By default no
norm is shown.

Cost Function Index T
he user may also choose to save a desired value in the list structure with the name Cost
Function. This may be utilized by the FindOptimum solver in optimization problems.

Parallel Append B
y default the output is written indipendently for each partition in parallel runs. Often it is, how-
ever, desirable to reduce the information into just one file. Then the data may be written just to
one file. This is avchieved by using the following operators in MPI_ALLREDUCE: MPI_MAX,
MPI_MIN, MPI_SUM. These are not sufficient for all operators. By default the value of the 1st
partition is written.

Save Eigenvalues Logical
Save the eigenvalues found in any of the variables.

Save Eigenfrequencies Logical
Save the frequencies computed from the eigenvalues found in any of the variables.

Operator i String
There are different operators that may be performed on all the given variables. These include op-
erators working on the set of numbers, max, min, max abs, min abs, mean, variance
and deviation. There are also a few operators that use statistics over the volume, int mean
and int variance. The volume used by a given variable is obtained by operator volume.
If a name for the coefficient, is given for the operator, the integral is taken over the coefficient.
One can for example obtain the weight from a integral over Density.
There are also a number of similar operators that only operate on the boundary. These are invoked
by boundary sum, boundary dofs, boundary mean, boundary max, boundary

CSC – IT Center for Science



44. Save Data 186

min, boundary max abs, boundary min abs, area, boundary int, and boundary
int mean.
Three different energy type of quantities may be computed by domain integral operators diffusive
energy, convective energy, potential energy. Finally, also boundary inte-
grals are possible using operators diffusive flux, convective flux, boundary int,
boundary int mean and area. These require that in the boundary conditions the active
boundaries are defined. Also here there may be an optional coefficient.
Some operators do not work on the solution itself but use other info related to that. Operator
dofs simply returns the length of the variable under study. Operator norm returns the last com-
puted norm of the field variable, and operators nonlinear change and steady state
change return the last computed convergence measures at the nonlinear and steady state levels.
Operator nonlin iter returns the number of nonlinear iterations, while operators nonlin
converged and coupled converged which tell whether or not the simulation has con-
verged. Note that these operators most operate on the primary variable for which the matrix
equation is solved for.
Finally for parallel runs the operator partitions may be usefull in creating parallel scaling
results in automated manner.
There may be up to 99 different operators. If the variable is a vector the statistics is performed
on its length.

Coefficient i String
Even though only limited number of operators are given almost any energy or flux kind of quan-
tity may be computed since the coefficient c may be defined by the user. The idea is that the
same data that is already used as a material parameter can be simple referred to by its name. The
coefficient may be, Heat Conductivity, Permittivity, Density, for example. Usu-
ally the coefficient is the same that was used in computing the field variable under integration.
For the diffusive energy and diffusive flux the coefficient may even be a matrix.
This parameter is optional and the default is one.

Parallel Operator i String
Sometimes the default parallel reduction method is not the desired one. Therefore the user may
define the parallel reduction method by this keyword. The alternatives are min, max and sum.

Polyline Coordinates(n,DIM) Real
This keyword may be used to create line segments that are defined by points x1, y1, x2, and
y2. For each line different kinds of fluxes trough the elements may be computed. This makes it
possible, for example, to check the mass flux even though no boundary has a priori been defined.

Boundary Condition bc id

Save Scalars Logical
The flag activates the computation of boundary related information. The results are treated inde-
pendently for each boundary. The keyword replaces the previously used Flux Integrate.

Keywords of subroutine SaveLine
Solver solver id

Procedure File "SaveData" "SaveLine"

Filename String
Name of the file where results are to be saved, the default is sides.dat.

File Append Logical
If the results from consecutive rounds should be appended to the file this flag should be set to
True. The default is False.

Save Axis Logical
Save all the principal axis. Also keywords Save Axis i exist, where i=1,2,3 defines the axis.
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Polyline Coordinates(n,DIM) Real
Save the line consisting of line segments defined by two points (n = 2). There can be more than
one set of points (n = 2, 4, 6, . . .) but as a line segment is defined by two points there must be
an even number of points.

Variable i String
By default SaveLine saves all the active variables. However, it is possible to save only a spec-
ified list of variables given by this keyword where tt i=1,2,3,. . . This may be particularly useful
if one wants to save a table of linear dependece, for example Temperature along x-direction, to
be used as a boundary condition in consecutive Elmer runs with a different mesh.

Save Flux Logical
Saves a flux resulting from a gradient of a field by the model h = −κ∂T/∂n. This may only be
applied to existing boundaries, not lines defined by points.

Flux Variable String
The name of the field variable (default T is Temperature).

Flux Coefficient String
The diffusion constant (by default κ is Heat Conductivity)

Save Mask String
a By default SaveLine saves only the values that are on boundary marked with Save Line flag.
If the user wants several instances of the SaveLine subroutine, for saving different buondaries to
different files, the mask name may be defined by this keyword. The correspondingly one should
use the same flag in the Boundary Condition and Body section.

Boundary Condition bc id

Save Line Logical
The flag activates the saving of the boundary condition as a line. The subroutine tries to save
the finite-element lines as a chain of points to enable nice preprocessing with MatLab or similar
tools. The flux may only be saved on lines defined by boundary conditions.

Keywords of subroutine SaveMaterials
Solver solver id

Procedure File "SaveData" "SaveMaterials"

Parameter i String
The user may choose a number of parameters (i=1,. . . ,99) which will be save as variables. This
may be particularly handy if one wants to visualize how the parameters depend on the position
over the domain. Values in bodies with the assigned material list not containing the keyword of
the parameter are set to zero by default.

Keywords of subroutine SaveBoundaryValues
Solver solver id

Procedure File "SaveData" "SaveBoundaryValues"

Variable String -nooutput dummyvar
a dummy variable for the solver that does not show up

Variable DOFs Integer 1

Parameter i String
The user may choose a number of parameters (i=1,. . . ,99) which will be save as variables. These
parameters will then be stored as variables with the values assigned as they were found on the
specific boundary. Bulk values and values on boundaries with the parameter not being defined
are set to zero by default.
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Result Output for Other Postprocessors

Module name: ResultOutputSolve
Module subroutines: ResultOutputSolver
Module authors: Erik Edelmann, Mikko Lyly, Peter Råback
Document authors: Peter Råback
Document created: 11.12.2006
Document edited: 3.8.2007

45.1 Introduction
This subroutine is intended for saving data in other than the native format of Elmer – ElmerPost. The reason
for using another postprocessing tool might be that some feature is missing in ElmerPost, or that the user
is more aquinted with some other visuzalition software. Currently supported formats include GiD, Gmsh,
VTK legacy, XML coded VTK file bearing the suffix VTU and Open DX.

45.2 Keywords
Solver solver id

Equation String "ResultOutput"
The name of the equation. This is actually not much needed since there are no degrees of freedom
associated with this solver.

Procedure File "ResultOutputSolve" "ResultOutputSolver"
The name of the file and subroutine.

Output File Name File
Specifies the name of the output file.

Output Format String
This keyword the output format of choice. The choices are gid, gsmh, vtk, vtu, and dx.

Gid Format Logical

Gmsh Format Logical

Vtk Format Logical

Vtu Format Logical

Dx Format Logical
The user may also use the above logical keywords to set which of the formats is saved. This
has more flexibility in that there may be several formats that are saved simultaneously where the
Output Format keyword may only be used to activate one solution type.
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The following keywords related only to the GiD, Vtu and Gsmh formats. In the other formats all
available degrees of freedom are saved.

Scalar Field i String
The scalar fields to be saved, for example Pressure. Note that the fields must be numbered
continously starting from one.

Vector Field i String
The vector fields to be saved, for example Velocity

Tensor Field i String
The tensor fields to be saved. The rank of tensor fields should be 3 in 2D and 6 in 3D.

Sometimes when the variables need to be explicitely listed it may be difficult to know what the actual
available variables are. For this purpose there is the following keyword.

Show Variables Logical
Show all the different variables on output as a list. Default is False.
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Reload Existing Simulation Results

Module name: ReloadData
Module subroutines: ReloadSolution
Module authors: Antti Pursula
Document authors: Antti Pursula
Document created: August 9th 2007

46.1 Introduction
This subroutine is intended for repeated loading of existing results during simulation. An example of a
typical application is to use previously computed fluid flow as a convection field for the transfer of a passive
scalar variable. The module is implemented as a dummy solver which is defined in the command file just as
the ’normal’ solvers.

This module offers extended features compared to the Restart File option in the Simulation
section. The module reads a new solution step from the solution file on each timestep, whereas the restart
file option reads only the initial state for a simulation.

The module reads in all the available variales from the solution file. The solution file should be in the
mesh directory. If the simulation takes more than a single steady state iteration per time step it is advicable
to use Exec Solver = Before Timestep for this module.

46.2 Keywords
Solver solver id

Equation String "Reload Data"
The name of the equation. This is actually not much needed since there are no degrees of freedom
associated with this solver.

Procedure File "ReloadData" "ReloadSolution"
The name of the file and subroutine.

Reload Solution File String "flow-data.dat"
The name of the old solution data file, eg. flow-data.dat

Reload Starting Position Integer
The index of the timestep where to start reading. If the keyword is not given the reading is started
from the first step in the file, or from the beginning of the reload range, if specified.

Reload Range Minimum Integer

Reload Range Maximum Integer
The beginning and the end of the reading range. The timesteps on the range are read in cyclically
if the current simulation has more timesteps than what there are on the range.
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Reload Reading Intervals Integer
Defines the interval for reading in old results, defaults to 1. An integer i larger than 1 defines that
results are read in only on every ith timestep. However, consecutive steps are read in regardless
of the value of i.

Continuous Reading Logical True
When set to True the reload solution file is kept open also between the timesteps. However,
when reading is not started at the first solution step, or when the old solution is read in cyclically,
it is advicable to switch this feature off. Defining False will slow down reading especially
from large ASCII files.
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Runtime Control of the Input Data

Module name: ReloadInput
Module subroutines: ReloadInput
Module authors: Juha Ruokolainen
Document authors: Peter Råback
Document created: Februrary 5th 2003

47.1 Introduction
This subroutine is intended for cases where the user wants to have run-time control over the solution. The
control is obtained by reloading the command file (.sif-file) during the solution. This is done with on addi-
tional solver that is called similarly as any other solver during the solution process.

The most likealy usage of the solver is in cases where the user realizes during the solution process that
the some parameters were not optimally chosen. For example, the convergence critaria may have been set
too tight for optimal performance. Then the user may set looser criteria by editing the command file during
the computation. Once the new value is read the solver will apply the new criteria thereafter.

47.2 Limitations
The solver should not be used for things that need allocation. For example, the number of solvers or bound-
aries may not change. Also the computational mesh must remain the same.

47.3 Keywords
Solver solver id

Equation String "Reload"
The name of the equation. This is actually not much needed since there are no degrees of freedom
associated with this solver.

Procedure File "ReloadInput" "ReloadInput"
The name of the file and subroutine.
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Filtering Time-Series Data

Module name: FilterTimeSeries
Module subroutines: FilterTimeSeries
Module authors: Peter Råback
Document authors: Peter Råback
Document created: 13.2.2008
Document updated: 13.2.2008

48.1 Introduction
The module includes auxiliary utilities for filtering time-series data. Supported filters include various aver-
aging possibilities and Fourier series, for example. The solver does not introduce any new physics. However,
it may be useful in analyzing time-dependent data to be used in conjunction with time-harmonic models, or
in studying phenomena with different timescales (turbulence).

48.2 Theory

Mean of a function
The solver is built so that an estimate for the filtered data may be obtained at all times i.e. the normalizing
is done after each timestep. As an example let’s consider taking a simple mean over a period of time. The
starting point is the time averaged mean,

< f >T=
1
T

∫ T

0

f(t) dt. (48.1)

Its discrete counterpart assuming piecewise constant integration is

< f >n=
1
Tn

n∑
i

fi dti, (48.2)

where Tn =
∑
dti. Now this may be presented inductively as

< f >n =
Tn−1 < f >n−1 +fndtn

Tn−1 + dtn
(48.3)

Tn = Tn−1 + dtn. (48.4)
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Weighted mean
It’s also possible to take a weighted mean with a user defined function g(t) depending on time only. Then
similarly,

< fg >n=
Tn−1 < fg >n−1 +fngndtn

Tn−1 + dtn
. (48.5)

Fourier series
Using the weighted mean as starting point its possible to present the solution in terms of sine and cosine
series. In order to obtain normalized Fourier series components the function g is internally replaced by sine
and cosine functions defined as 2 sin(2πkwt) and 2 cos(2πkwt), where k is the degree of the term, and w is
the user defined frequency. After each full cycle the inner product then includes the Fourier coefficients and
the transient solution may hence be approximated by

f ≈
ms∑
k=1

sk sin(2πkwt) +
mc∑
k=1

ck cos(2πkwt), (48.6)

where ms and mc are maximum degrees defined by the user.

Continuous average
Sometimes it may be useful that the new solution is given a relatively higher weight than the old solution.
This is achieved by relaxing the weight (elapsed time) related to the old solution by

Tn−1 := Tn−1 exp(−dtn/τ), (48.7)

where τ is the time scale when decay to fraction 1/e is desired. If the decay time is short compared to the
overall simulation time this provides a continuous mean that represents only the recent results. The fraction
of the last timestep in solution will always be dt/τ .

Computing variances
It is not possible to compute the variance directly with one sweep as computing the variance from the
functional values requires the knowledge of the mean. However, computing the mean of the square of the
solution enables that the variance is computed a posteriori since the following holds for any field variable,

σ2 =< (f− < f >)2 >=< f2 > − < f >2 . (48.8)

48.3 Keywords
Solver solver id

Procedure File "FilterTimeSeries" "FilterTimeSeries"

Variable i String
The names of the variables to be filtered. There can in principle be up to 99 variables. Note that
the keywords with the same i form a set which define one filtering. If the Variable is not
redefined the previously defined variable with a lower i is used.

Operator i String
Normally the variable is treated as its plain value. There are however different options for using
the field value in a modified manner. These include length (L2 norm), abs, and square.

Start Time i Real
The start time for performing the integration. Note that for Fourier series this is used to reset the
zero time i.e. t := t− t0.
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Stop Time i Real
The stop time for performing the integration.

Start Timestep i Integer
Sometimes its unpractical to compute the start time. For example, the start of the simulation
could include a starting strategy with a number of timesteps. Then the number of timesteps
that starts the averaging may be given by this keyword. Note that this keyword also activates
timestep-insensitive averaging.

Stop Timestep i Integer
The timestep number that ends the averaging.

Start Cycle i Real
Alternative way to give the start time for sine and cosine series. The start time is the inverse of
this.

Stop Cycle i Real
Alternative way to give the stop time for sine and cosine series.

Start Real Time Real
Start after given real wall-clock-time, rather than physical simulation time.

Start Real Time Fraction Real
Relative way of given start time when the Real Time Max keyword in Simulation block
is given.

Reset Interval i Real
The time interval at which the computation of a mean is reinitialized.

Decay Time i Real
The decay time τ in computing continuous means.

Decay Timestep i Real
The number of timestep needed to perform averaging. If the timestep given isN then the dacay of
the previous timesteps is done with exp(−1/N). Note that this keyword also activates timestep-
insensitive averaging.

Time Filter i Real
The function g(t) that may be used in computing the mean.

Sine Series i Integer
The number of terms in the sine series. Note that its possible to make a Fourier series only if the
target variable is a scalar. Its also possible to have only one sine or cosine series at a time.

Cosine Series i Integer
The number of terms in the cosine series.

Frequency i Integer
If using cosine or sine series the frequency must be given.
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Projection to plane

Module name: ProjectToPlane
Module subroutines: ProjectToPlane,ParallelProjectToPlane
Module authors: Juha Ruokolainen and Peter Råback
Document authors: Peter Råback
Document edited: 18.6.2010

49.1 Introduction
Sometimes the solution of a complex problem calls for a dimensional reduction of some field variables. A
possible scenario for using the solver is in extracting some useful information from DNS or LES type of
flow simulations. This module offers the subroutines needed in such a cases.

There are currently a serial and a parallel version of the subroutine which are both located in this module.
The reason for the fork is that the parallel version uses techniques that are not optimal in the serial problem.
Therefore the user should herself choose the correct version. Optimally these two approaches should of
course be fused.

49.2 Theory
In principle the dimensional reduction is performed taking on average of a 2D (or axisymmetric) nodal point
~r2D when it travels through the 3D mesh.

f2D(~r2D) =
1
S

∫
f(~r3D) dS. (49.1)

In practice this is implemented with the following steps

1. Create a list of faces for the 3D mesh

2. Loop though each nodal point in the 2D mesh

(a) Loop through each face in the 3D mesh
i. Check if there is an intersection between the integration line and face

ii. If intersection found memorize the point of intersection
(b) Order the intersection points in the integration direction
(c) Take an weigted average over the ordered list, (fi, ri)

The algorithm is accurate for linear elements. For higher order elements it is suboptimal in accuracy. Also
in axisymmetric mapping the elements should be small enough so that the curvature of the line segment is
not significant. Near the origin there may be few hits and then the averaging is done by just taking a small
number of values around the center axis.
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49.3 Keywords
Solver solver id

Equation ProjectToPlane
The arbitrary name of the equation.

Procedure File "ProjectToPlane" "ProjectToPlane"
or

Procedure File "ProjectToPlane" "ParallelProjectToPlane"

Convert From Equation Name String
The solver needs a 3D mesh which is associated determined by the association to the solver given
by this keyword.

Convert From Variable String
The variable to be converted.

Volume Permutation Integer
The algorithm is build so that integration direction is the second coordinate (y). This is typically
valid for axisymmetric cases, for example. If the integration should be performed with respect
to some other direction the volume coordinates may be permuted by this keyword.

Plane Permutation Integer
Permutation of the plane coordinates.

Rotate Plane Logical
Should rotation be performed.

Max Relative Radius Real
For the axisymmetric projection the outer radius may be difficult since the 3D mesh typically
may have faces that do not quite extend to the surface. This is a result of finite sized linear
elements. To ease this problem the user may give the maximum relative radius that is used when
trying to find the point of intersection.

Minimum Hits At Radius Integer
The number of hits needed for a accepted integration. The default is one.

Integration Points At Radius Integer
If no minimum number of hits is achieved then a few points around the axis is used to determine
the value. The default is two.
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Internal cost function optimization

Module name: FindOptimum
Module subroutines: FindOptimum
Module authors: Peter Råback
Module status: Alpha
Document authors: Peter Råback
Document created: 18.3.2009
Document edited: 18.3.2009

50.1 Introduction
This solver is an auxiliary solver for optimization problems. As input it requires a cost function computed
with the previous parameter values, and as output it gives the new parameters for which the cost function will
be computed for. Typically the cost function depends on the solution of one or several differential equations.
Based an this solution a measure of goodness for the solution is computed.

The routine is still in its development phase but is provided as a skeleton that may be further developed.

50.2 Theory
The optimization routines must be sligthly modified from their standard form since the solver is not in a
ruling position in respect to the simulation. Therefore its difficult to plug in existing optimization packages
to this solver.

Currently the solver includes some very basic optimization routines. Of these the Simplex algorithm
(Nelder-Mead) and the differential GA (Genetic algorithm) are the only ones that may be used for a number
of design variables.

For just one design variables there is the choice of simple scanning, bisection search and the secant
method. Secant method finds roots making it better suited for problems where the target is known i.e. design
problems.

50.3 Keywords
Simulation

Simulation Type String ”scanning”
The natural mode used for optimization problems is scanning. If the problem is really time-
dependent the current internal solution is not probably the optimal solution.
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Timestep Intervals Integer
The maximum number of optimization rounds is in the case of scanning defined by the timestep
intervals.

Solver solver id

Equation String FindOptimum
A describing name for the solver.

Variable String OptPar
The name of the variable may be freely chosen as far as it is used consistently also elsewhere.

Variable DOFs Integer n
Degrees of freedom for the pressure. Here n should be equal to the number of parameters.

Variable Global Logical True
Indicates the variable is a global one i.e. not a field variable. For global variables the number of
unknowns is the same as number of dofs.

Procedure File "FindOptimum" "FindOptimum"
The name of the module and procedure. These are fixed.

Optimization Method String
Choices are currently random, scanning, genetic, bisect, secant and simplex.

Cost Function Name String
The name of the cost function that is a real stored in the Simulation list structure.

Optimal Restart Logical
Use the previous best set of parameters for the 1st round of cost function computation.

Optimal Finish Logical
Use the best set of parameters for the last round of cost function computation. This may be useful
as the last step is often also saved.

Best File File [best.dat]
The file were the best set of parameters is always saved.

Guess File File [best.dat]
The file were the best set of parameters is read in case of optimal restart.

Fixed Parameter i Logical
Is the i:th parameter fixed. Applies for some optimization routines.

Min Parameter i Real
Minimum value for i:th parameter. Applies for some optimization routines.

Max Parameter i Real
Maxium value for i:th parameter. Applies for some optimization routines.

Initial Parameter i Real
Initial value for i:th parameter if not given by the Optimal restart

Internal history Logical
Save the internal values within the solver.

History File File
The name of the file where the history data is saved.

Cost Function Target Real
If the given cost function is C use C − C0 instead.

Cost Function Absolute Logical
If the given cost function is C use |C| instead.

Cost Function Maximize Logical
If the given cost function is C use −C instead.

The following keywords apply to the GA algorithm
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Population Size Integer [5n]

Population Coefficient Real [0.7]

Population Crossover Real [0.1]

The following keyords apply to the simplex algorithm

Simplex Relative Length Scale Real [0.01]
The relative length scale that determines the size of the 1st simplex.

Simplex Restart Interval Integer
The restart interval after which the simulation is restarted if the convergence is poor.

Simplex Restart Convergence Ratio Real
A critical value which is used to define a poor convergence ratio.

The following keyords apply to the secant method

Step Size Real
The step size of the first computations.

Max Step Size M
aximum allowed step size.

Relaxation Factor R
elaxation used in the secant method.

This shows just a couple of examples how the design parameters could be used in the simulation. The
variables may be referred in a similar manner as other global variables such as time or timestep size.

Body Force 1
Heat Source = Equals OptPar 1

End

Boundary Condition 1
Heat Flux = Equals OptPar 2

End
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accumulation, 102
Active Coordinate, 94, 110
Additional Info, 139
Advection Diffusion Equation Varname, 29
AdvectionDiffusionSolver, 26
AdvectionReactionSolver, 32
ALE Formulation, 104
Angular Frequency, 51, 67, 68, 100
Angular Velocity, 23
Applied Magnetic Field i, 23, 72
Apply Dirichlet, 104
Artery Outlet Solver, 166
Artery Poisson Ratio, 166
Artery Radius, 166
Artery Wall Thickness, 166
Artery Wall Youngs Modulus, 166
ArteryOutlet, 164
Artificial Compressibility, 144, 145
artificial compressibility, 141
ArtificialCompressibility, 141
Averaging Method, 110
Averaging Order, 110

BDF Order, 11, 28, 33
Before Linsolve, 139
BEM, 96, 99
Best File, 199
bisection, 198
Block Preconditioning, 151
Body, 113, 118, 138
Body Force, 22, 39, 48, 55, 59, 62, 66, 67, 71, 77,

85, 95, 98, 105, 110, 129, 151, 156, 161
Body Force i, 151
Body Forces, 14, 29, 34
Body ID, 105
Body Id, 98, 101, 114
Boltzmann Constant, 84
Boltzmann distribution, 82
Boundary Condition, 15, 24, 30, 35, 40, 42, 48, 52,

55, 59, 63, 66, 67, 72, 76, 80, 85, 90, 95,
98, 101, 105, 108, 110, 113, 118, 126, 132,
144, 151, 156, 159, 161, 166, 178, 180,
182, 186, 187

boundary element method, 96, 99
boundary integral, 186
Boundary Layer Thickness, 25

Boussinesq, 22
Boussinesq approximation, 19
Box Contact Directions, 124
Box Particle Collision, 124
Box Particle Contact, 124
Box Particle Periodic, 124
Box Periodic Directions, 124
Bubbles, 12, 29, 51, 94
Bulk Modulus, 90

Calculate Capacitance Matrix, 55
Calculate Current Density, 68
Calculate Electric Energy, 55, 84
Calculate Electric Field, 55, 68, 84
Calculate Electric Flux, 55, 84
Calculate Electric Force, 182
Calculate Fluidic Force, 180
Calculate Flux, 90, 172
Calculate Flux Abs, 172
Calculate Flux Dim, 90
Calculate Flux Magnitude, 172
Calculate Force, 90
Calculate Force Dim, 90
Calculate Grad, 172
Calculate Grad Abs, 172
Calculate Grad Magnitude, 172
Calculate Heating, 90
Calculate Joule Heating, 59, 62, 68
Calculate Magnetic Field Strength, 68
Calculate Magnetic Flux, 62
Calculate Magnetic Flux Abs, 62
Calculate Matrix Suction, 94
Calculate Maxwell Stress, 68
Calculate Stresses, 39
Calculate Surface Charge, 55
Calculate Viscous Force, 180
Calculate Volume Current, 59
Capacitance Bodies, 55
Capacitance Body, 56
capacitance matrix, 54
Capacitance Matrix Filename, 55
Charge Density, 55, 85
Charge Number, 85
ChargeDensitySolver, 133
coating, 106
Coefficient i, 186
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Compressibility Model, 30, 89, 144
CompressibilityScale, 141
Compressiblity Model, 15, 23
Concentration Units, 29
Conserve Volume, 131
Conserve Volume Relaxation, 131
Constant Bulk Matrix, 174, 175
Constant Bulk System, 39
Constant Weights, 55, 59, 84
Constants, 11, 21, 55, 61, 65, 76, 80, 84, 181
continuity equation, 142
Continuous Reading, 191
Convection, 14, 22, 29, 34, 105
Convection Velocity i, 15, 30, 35, 113
Convective, 150
Convert From Equation Name, 197
Convert From Variable, 197
Coordinate Condition Variable Name, 124
Coordinate Initialization Method, 122
Coordinate System, 11, 28, 33, 169
Cosine Series i, 195
Cost Function Absolute, 199
Cost Function Index, 185
Cost Function Maximize, 199
Cost Function Name, 199
Cost Function Target, 199
Critical Shear Rate, 24
Cumulative Displacements, 158
Current Control, 59
Current Density, 59, 62
current density, 57
Current Density BC, 59
Current Density i, 66
Current Phase Angle, 62
Current Source, 59
curvature, 129
Curvature Coefficient, 131
Curvature Diffusion, 131

Damping, 48
Darcy’s law, 20
Decay Time i, 195
Decay Timestep i, 195
Deflection i, 48
Delete Wall Particles, 123
delta function, 128
Density, 15, 23, 30, 39, 48, 76, 77, 113, 118, 150,

156, 166
Desired Heating Power, 62
DFTSolver, 133
dielectric layer, 80
Dirichlet boundary condition, 10, 18, 27, 33, 61, 70
Discontinuous Galerkin, 32, 34
Displaced Shape, 145
Displacement i, 39, 40, 166

Displacement Mode, 110
Displacement Variable Name, 145
Div Discretization, 22
Divergence Variable, 175
DivergenceSolver, 175
domain integral, 186
Dot Product Tolerance, 110
drawing, 106
Dx Format, 188

effective parameters, 46
Eigen Analysis, 38, 47, 139
Eigen System Damped, 139
Eigen System Use Identity, 139
Eigen System Values, 38, 48, 139
Electric Conductivity, 59, 63, 66, 72, 77
Electric Conductivity Im, 67
Electric Field , 76, 77
Electric Flux, 55, 67
Electric Flux BC, 55, 85
Electric Flux Im, 67
Electric Potential, 66
Electric Potential Im, 67
Electric Transfer Coefficient, 67
ElectricForce, 181
Electrode Potential, 56
Electrokinetics, 73
electrokinetics, 21
Element, 66
Emissivity, 15, 16
energy conservation, 9
energy method, 46
Enforce Positive Magnitude, 172
Enthalpy, 15
EO Mobility, 77
Equation, 12, 14, 21, 22, 28, 29, 34, 38, 39, 42, 47,

51, 55, 58, 61, 62, 66–68, 70, 71, 76, 77,
84, 89, 90, 94, 95, 97, 100, 104, 107, 110,
112, 117, 122, 129–131, 138, 144, 145,
150, 161, 166, 169, 172, 174, 175, 177,
180, 182, 188, 190, 192, 197, 199

Eulerian, 127
Exact Coordinates, 185
Exec Solver, 182
Export Lagrange Multiplier, 163
Exported Variable 1, 34, 70, 97, 100, 104, 130, 174
Exported Variable 1 DOFs, 97, 100, 104
Extend Elastic Layers, 139
Extend Elastic Region, 139
External Concentration, 30
External Pressure, 25
External Temperature, 16
Extract Interval, 130

File Append, 130, 185, 186

CSC – IT Center for Science



INDEX 203

Filename, 130, 184, 186
Filename Particle Numbering, 126
Filename Prefix, 125
Filename Timestep Numbering, 126
FilmPressure, 90
filtering, 193
FilterTimeSeries, 193
FindOptimum, 198
Fix Displacements, 39
Fix Input Current Density, 66
Fixed Boundary, 161
Fixed Parameter i, 199
Flow Admittance, 90
Flow BodyForce i, 23
Flow Force BC, 25
Flow Line, 110
Flow Model, 21
FlowSolve, 17
Fluid Coupling With Boundary, 166
fluid-structure interaction, 141
FluidicForce, 179
Flux, 98
Flux 1, 101
Flux 2, 101
Flux Coefficient, 172, 178, 187
Flux Component, 172
Flux Variable, 178, 187
FluxSolver, 171
Force BC, 144
Force i, 40, 156
Fourier series, 193
Free Moving, 25
Free Surface, 25
free surface, 127
Free Surface Bottom, 108
Free Surface Number, 108
Free Surface Reduced, 108
FreeSurfaceReduced, 106
FreeSurfaceSolver, 102
Frequency, 38, 51
Frequency i, 195
Friction Heat, 14

Gap Height, 81, 89
Gebhardt factors, 11, 13
Gebhardt Factors Fixed After Iterations, 13
Gebhardt Factors Fixed Tolerance, 14
Gebhardt Factors Solver Full, 14
Gebhardt Factors Solver Iterative, 14
Genetic algorithm, 198
Geometric Stiffness, 39
GiD, 188
Gid Format, 188
Gmsh, 188
Gmsh Format, 188

Gradp Discretization, 22
Grashof convection, 18
Gravity, 21
Green’s function, 100
Guess File, 199

Hard Displacement Name, 110
Harmonic Analysis, 38
Heat Capacity, 15, 30
Heat Conductivity, 15, 113
Heat Equation, 14, 71
Heat Expansion Coefficient, 23, 40
Heat Flux, 16
Heat Flux BC, 15
Heat Source, 14, 77
Heat Transfer Coefficient, 16
HeatSolve, 9
Heaviside function, 128
Helmholtz, 51
HelmholtzBEM, 100
HelmholtzBEMSolver, 99
HelmholtzSolver, 50
History File, 199
Hole Correction, 48
Hole Depth, 81
Hole Fraction, 48, 81
Hole Size, 48, 81
Hole Type, 81
Hydraulic Conductivity, 94

Implicit Gebhardt Factor Fraction, 13
induction equation, 69
inflow boundaries, 33
Initial Condition, 15, 23, 30, 34, 39, 51, 63, 71, 105,

165
Initial Coordinate, 122
Initial Coordinate Search, 123
Initial Parameter i, 199
Initial Sphere Center, 122
Initial Sphere Radius, 122
Initial Velocity, 122
Initial Velocity Amplitude, 122
Initial Velocity Time, 123
Initial Volume, 131
Initialization Condition Variable, 122
Initialization Mask Variable, 122
integral equation, 96, 99
Integral Heater Control, 14
Integration Points At Radius, 197
Internal history, 199
Internal Mesh Movement, 118
Ion Density, 85

Joule Heat, 14, 59, 63, 71
Joule heating, 10, 58
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KE C1, 24
KE C2, 24
KE Cmu, 24
KE SigmaE, 24
KE SigmaK, 24
Kinetic Energy, 23
Kinetic Energy Dissipation, 23
Knudsen number, 87

Lagrange Multiplier Name, 163
Lagrange multipliers, 162
Lagrangian, 127
Latent Heat, 113, 118
Latent heat, 111
Layer Charge Density, 56
Layer Permittivity, 81
Layer Relative Permittivity, 56
Layer Thickness, 56, 81
level-set method, 127
LevelSet, 127
LevelSet Bandwidth, 131
Levelset bandwidth, 132
LevelSet Convect, 130
LevelSet Courant Number, 132
Levelset Curvature BC, 132
LevelSet Flux, 129
LevelSet Timestep Directional, 132
LevelSet Variable, 130, 131
LevelSet Velocity 1, 130
LevelSet Velocity 2, 130
LevelSet Velocity i, 129
LevelSetCurvature, 127
LevelSetDistance, 127
LevelSetIntegrate, 127
LevelSetSolver, 127
LevelSetTimestep, 127
Limit Solution, 34
Linear Constraints, 162
Linear System Convergence Tolerance, 151, 172, 174,

176
Linear System Iterative Method, 66, 172, 174, 176
Linear System Max Iterations, 151, 172, 174, 176
Linear System Preconditioning, 66, 172, 174, 176
Linear System Refactorize, 66
Linear System Solver, 172, 174, 176
Liquid, 113, 118
Lorentz Force, 23, 71
Lorentz force, 18
Lumped Acceleration After Iterations, 117
Lumped Acceleration Limit, 117
Lumped Acceleration Mode, 117

Magnetic Bodyforce i, 71
Magnetic Field i, 71, 72
Magnetic Field Strength i, 67

Magnetic Field Strength Im i, 67
Magnetic Flux Density i, 67
Magnetic Flux Density Im i, 67
Magnetic Flux Density Im n, 67
Magnetic Flux Density n, 67
Magnetic Induction, 22, 71
Magnetic Permeability, 72
Magnetic Transfer Coefficient, 67
Magnetic Vector Potential, 63
MagneticSolver, 69
Magnetization i, 66
MagnetoDynamics, 64
MagnetoDynamicsCalcFields, 64
magnetohydrodynamics, 69
magnetostatics, 60
mass conservation, 106
Mass Transfer Coefficient, 30
Material, 15, 23, 30, 35, 39, 42, 48, 51, 55, 59, 63,

66, 67, 72, 76, 77, 84, 89, 94, 113, 118,
129, 130, 132, 144, 145, 150, 156, 159,
166, 180, 182

Material Coordinates Unit Vector 1(3), 40
Material Coordinates Unit Vector 2(3), 40
Material Coordinates Unit Vector 3(3), 40
Matrix Topology Fixed, 13
Max Characteristic Speed, 123
Max Cumulative Time, 123
Max Initial Coordinate i, 122
Max Parameter i, 199
Max Relative Radius, 197
Max Step Size, 200
Max Timestep Intervals, 123
Max Timestep Size, 123
Maximum Displacement, 104
Maxwell stress tensor, 181
Maxwell’s equations, 53
Mean Free Path, 90
Melting Point, 118
Melting point, 111
Mesh Coefficient i, 159
Mesh Deform i, 159
Mesh Displace i, 161
Mesh Force i, 159
Mesh Normal Force, 159
Mesh Origin, 161
Mesh Penalty Factor, 159
Mesh Relax, 161
Mesh Rotate, 161
Mesh Scale, 161
Mesh Translate, 161
Mesh Update, 42
Mesh Update i, 42, 105
MeshSolver, 41
MHD Velocity i, 72
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Min Initial Coordinate i, 122
Min Parameter i, 199
Min Timestep Size, 123
Minimum Gebhardt Factor, 13
Minimum Hits At Radius, 197
Minimum View Factor, 13
Model Lumping, 39
Model Lumping Boundary, 40
Model Lumping Filename, 39
Moment About 1,2,3, 180
Moving Boundary, 161
Moving Mesh, 159, 185
Moving Wall, 126

Narrow Band, 130
natural convection, 18
Navier-Stokes, 22, 71
Navier-Stokes equation, 17
Nelder-Mead, 198
Neumann boundary condition, 11
Newmark Beta, 11, 28, 33
Newton iteration, 19
Newtonian, 17
Nodal Penalty Factor, 159
Nominal Potential Difference, 56
non-Newtonian, 17
Nonlinear Iteration Method, 150
Nonlinear System Convergence Tolerance, 12, 21,

28, 34, 62, 70, 84, 89, 94, 104, 108, 113,
151

Nonlinear System Max Iterations, 12, 21, 29, 34, 62,
71, 84, 89, 94, 113, 151

Nonlinear System Newton After Iterations, 12, 21,
84, 117, 151

Nonlinear System Newton After Tolerance, 12, 22,
84, 117, 151

Nonlinear System Relaxation Factor, 12, 22, 29, 62,
71, 94, 107, 110, 117, 144, 151

NonphysicalMeshSolver, 158
Normal Force, 40
Normal Tangential Velocity, 76
Normal Target Body, 31, 98, 101
Normal Variable, 113
Normal Velocity, 89
Normal-Tangential Displacement, 40
Normal-Tangential Velocity, 25
Number of Particles, 122

Ohm’s law, 57
Open DX, 188
Open Side, 90
Operator i, 185, 194
Optimal Finish, 199
Optimal Restart, 199
Optimization, 198

Optimization Method, 199
Optimize Matrix Structure, 139
ortotropic, 46
Outflow boundary, 151, 157
OutletCompute, 164
Output File Name, 188
Output Format, 125, 188
Output Intervals, 125
Output Node Types, 139

Parallel Append, 185
Parallel Operator i, 186
ParallelProjectToPlane, 196
Parameter i, 187
Particle Accumulation, 126
Particle Accumulation Max Shear, 126
Particle Accumulation Max Speed, 126
Particle Bounciness, 124
Particle Cell Fraction, 122
Particle Cell Radius, 122
Particle Charge, 124
Particle Damping, 124
Particle Decay Distance, 125
Particle Drag Coefficient, 124
Particle Element Fraction, 122
Particle Gravity, 124
Particle Lift, 124
Particle Mass, 124
Particle Node Fraction, 122
Particle Particle Collision, 123
Particle Particle Contact, 123
Particle Property Diffusion Coefficient, 125
Particle Property Normalize, 125
Particle Radius, 124
Particle Release Fraction, 123
Particle Release Number, 123
Particle Save Fraction, 126
Particle Spring, 124
Particle To Field, 125
Particle To Field Decay Time, 125
Particle To Field Mode, 125
Particle Trace, 126
ParticleDynamics, 119
Passive Steps, 118
perforated plate, 46
Perform Mapping, 107
Permeability of Vacuum, 61
Permittivity Of Vacuum, 55, 76, 80, 84, 181
Permittivity of Vacuum, 65
Phase Change, 118
Phase Change Model, 14
Phase Change Side, 114
Phase Change Variable, 112, 117
Phase Velocity i, 118
PhaseChangeSolve, 111, 115
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Physical Units, 30, 31
Picard iteration, 19
Plane Permutation, 197
Plane Stress, 39
Poisson, 133
Poisson Boltzmann Alpha, 85
Poisson Boltzmann Beta, 85
Poisson Ratio, 39, 42, 159
Poisson ratio, 48
Poisson-Boltzmann equation, 21, 82
PoissonBEM, 97
PoissonBEMSolver, 96
PoissonBoltzmannSolve, 82
Polyline Coordinates(n,DIM), 186, 187
Population Coefficient, 200
Population Crossover, 200
Population Size, 200
Porositity Model, 94
Porous Media, 24
porous media, 20
Porous Resistance, 24
Potential, 55, 59, 67, 85, 98
Potential 1 e, 67
Potential Coefficient, 23
Potential Difference, 55, 81
Potential Field, 23
Potential Force, 23
Potential Variable, 68
Potential Variable Name, 124
Potential e, 67
Power Control, 59
Pressure, 23, 25, 48
Pressure 1, 101
Pressure 2, 101
Pressure i, 25, 51, 52, 166
Procedure, 28, 34, 42, 47, 48, 51, 55, 59, 62, 66–68,

70, 81, 84, 89, 90, 94, 95, 97, 100, 104,
107, 110, 112, 117, 122, 129–131, 144,
145, 150, 158, 161, 166, 169, 172, 174,
175, 177, 180, 182, 184, 186–188, 190,
192, 194, 197, 199

projection matrix, 137
ProjectToPlane, 196
Pull Rate Control, 113

Radiation, 16
Radiation Boundary, 16
Radiation Boundary Open, 16
Radiation Target Body, 16
reaction rate, 32
reduced order model, 137
Reference Pressure, 15, 24, 30, 90, 145
Reference Temperature, 23, 40, 84
reinitialization, 127
Reinitialize Field, 125

Reinitialize Interval, 130
Reinitialize Particles, 123
Reinitialize Passive, 130
Relative Permeability, 63, 66
Relative Permittivity, 55, 66, 76, 81, 84, 182
Relaxation Factor, 104, 200
Reload Range Maximum, 190
Reload Range Minimum, 190
Reload Reading Intervals, 191
Reload Solution File, 190
Reload Starting Position, 190
ReloadData, 190
ReloadInput, 192
ReloadSolution, 190
Reluctivity Im, 67
Reset Interval i, 195
Residual Water Content, 94
Restart File, 190
ResultOutputSolve, 188
Reverse Ordering, 139
Reynolds equation, 86
Reynolds Pressure Variable Name, 90
ReynoldsHeatingSolver, 86
ReynoldsSolver, 86
Richards equation, 92
Richards Flux, 95
Richards Source, 95
RichardsFlux, 92
RichardsSolver, 92
Rigid Body, 138
RigidBodyReduction, 137
RigidMeshMapper, 160
Rotate Elasticity Tensor, 40
Rotate Plane, 197
run-time control, 192

Saturated Hydraulic Conductivity, 94
Saturated Initial Guess, 94
Saturated Water Content, 94
Save Axis, 186
Save Coordinates(n,DIM), 185
Save Eigenfrequencies, 185
Save Eigenvalues, 185
Save Flux, 187
Save Line, 187
Save Mask, 187
Save Points(n), 185
Save Scalars, 186
SaveBoundaryValues, 183
SaveData, 183
SaveLine, 183
SaveMaterials, 183
SaveScalars, 183
Scalar Field i, 126, 189
Scalar Potential, 178
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ScalarPotentialSolver, 177
Scalars Prefix, 184
secant method, 198
Shear Stress Output, 180
Shear Stress Output File, 180
Show Norm Index, 185
Show Variables, 189
signed distance, 127
Simplex Relative Length Scale, 200
Simplex Restart Convergence Ratio, 200
Simplex Restart Interval, 200
Simulation, 11, 28, 33, 51, 100, 132, 156, 169, 198
Simulation Output Intervals, 125
Simulation Timestep Sizes, 123
Simulation Type, 11, 28, 33, 198
Sine Series i, 195
Smart Heater Control, 14
Smart Heater Control After Tolerance, 13
SmitcSolver, 44
Solid, 113, 118
Solver, 12, 21, 28, 33, 38, 42, 47, 51, 55, 58, 61, 66–

68, 70, 84, 89, 90, 94, 95, 97, 100, 104,
107, 110, 112, 117, 122, 129–131, 138,
144, 145, 150, 158, 161, 163, 166, 169,
172, 173, 175, 177, 180, 182, 184, 186–
188, 190, 192, 194, 197, 199

SolveWithLinearRestriction, 162
Sound Damping, 51
Sound Speed, 51
Source, 98
Specific Heat Ratio, 15, 24, 30, 90
Spring, 48
Stability Analysis, 38
Stabilization Method, 104
Stabilize, 12, 22, 29, 129
Start Cycle i, 195
Start Real Time, 195
Start Real Time Fraction, 195
Start Time i, 194
Start Timestep i, 195
StatCurrentSolve, 57
StatCurrentSolver, 57
StatElecBoundary, 78
StatElecBoundaryCharge, 78
StatElecBoundaryEnergy, 78
StatElecBoundaryForce, 78
StatElecBoundarySpring, 78
StatElecForce, 181
StatElecSolve, 53
StatElecSolver, 53
Static Magnetic Field, 62
Statistical Info, 125
StatMagSolver, 60
Steady State Convergence Tolerance, 12, 22, 29, 34,

71, 144
Steady State Max Iterations, 156
Stefan Boltzmann, 11
Stefan-Boltzmann constant, 11
Step Size, 200
Stokes Stream Function, 170
Stokes stream function, 168
Stop Cycle i, 195
Stop Time i, 195
Stop Timestep i, 195
Stream Function First Node, 169
Stream Function Scaling, 170
Stream Function Shifting, 170
Stream Function Velocity Variable, 169
Streamline, 168
StreamSolver, 168
Stress Analysis, 39
Stress Bodyforce 1,2,3, 39
StressSolve, 36
Structure Coupling With Boundary, 166
StructureFlowLine, 109
substantial surface, 102
Sum Forces, 180
Surface Charge, 85
Surface Charge Density, 55
surface tension, 129
Surface Tension Coefficient, 25
Surface Tension Expansion Coefficient, 25
Surface Velocity i, 89

Table Format, 125
Tangent Velocity i, 89
Target Field, 159
Target Nodes, 178
Target Variable, 95, 172
Target Variable i, 185
Temperature, 15
Tension, 48
Tensor Field i, 189
Thickness, 48
Time Filter i, 195
Timestep Courant Number, 123
Timestep Distance, 123
Timestep Intervals, 199
Timestep Size, 123
Timestepping Method, 11, 28, 33
Timing Info, 125
Transient Speedup, 113
Triple Point Fixed, 113, 117
True Flow Line Iterations, 110

Unit Charge, 84
Update Gebhardt Factors, 13
Update Transient System, 39
Update View Factors, 13
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Use Linear Elements, 104
Use Nodal Loads, 113
Use Original Coordinates, 161
Use Tree Gauge, 66
User Defined Velocity, 71

van Genuchten Alpha, 94
van Genuchten M, 94
van Genuchten N, 94
Variable, 28, 34, 42, 47, 51, 55, 59, 62, 66, 67, 70,

84, 89, 94, 97, 100, 104, 107, 112, 117,
129, 131, 138, 145, 150, 158, 161, 166,
169, 174, 176, 177, 187, 199

Variable DOFs, 47, 51, 55, 59, 70, 84, 89, 94, 97,
100, 104, 107, 112, 117, 139, 150, 166,
169, 187, 199

Variable Global, 199
Variable i, 185, 187, 194
Variable_name, 34, 35
Variable_name Gamma, 35
Variable_name Lower Limit, 35
Variable_name Source, 34
Variable_name Upper Limit, 35
variational inequality, 103
Varname, 30, 105
Varname Accumulation, 105
Varname Accumulation Flux i, 105
Varname Diffusion Source, 29
Varname Diffusivity, 30
Varname Flux, 30
Varname Maximum Solubility, 30
Varname Solubility Change Boundary, 31
Varname Soret Diffusivity, 30
Vector Field i, 126, 189
Velocity 1, 76
Velocity 2, 76
Velocity 3, 76
Velocity Condition Variable Name, 124
Velocity Field Name, 180
Velocity Gradient Correction, 124
Velocity i, 23, 25
Velocity Implicitness, 104
Velocity Initialization Method, 122
Velocity Relaxation Factor, 113
Velocity Smoothing Factor, 113
Velocity Variable Name, 110, 124
view factors, 13
View Factors Fixed After Iterations, 13
View Factors Fixed Tolerance, 13
View Factors Geometry Tolerance, 13
Viewfactor Combine Elements, 14
Viewfactor Divide, 14
Viscosity, 15, 23, 76, 89, 132, 150, 156, 180
Viscosity Difference, 24, 132
Viscosity Exponent, 24

Viscosity Model, 24, 89, 132
Viscosity Temp Exp, 24
Viscosity Temp Ref, 24
Viscosity Transition, 24
Volume Permutation, 197
Vorticity Result Variable, 174
Vorticity Variable, 174
VorticitySolver, 173
VTK, 188
Vtk Format, 188
VTU, 188
Vtu Format, 125, 188

Wall Law, 25
Wall Particle Bounciness, 125
Wall Particle Collision, 126
Wall Particle Radius, 125
Wall Particle Spring, 125
Water Content, 94
Wave Flux 1,2, 52
Wave Impedance 1,2, 52
WaveFunctionSolver, 133
WhitneyAVHarmonicSolver, 64
WhitneyAVSolver, 64
Wnodal, 166

Yasuda Exponent, 24
Youngs Modulus, 40, 42, 159
Youngs modulus, 48

Zeta Potential, 77
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