Option variable
breakup
Default value: true
When breakup
is true
, solve
expresses solutions
of cubic and quartic equations in terms of common subexpressions,
which are assigned to intermediate expression labels (%t1
, %t2
, etc.).
Otherwise, common subexpressions are not identified.
breakup: true
has an effect only when programmode
is false
.
Examples:
(%i1) programmode: false$ (%i2) breakup: true$ (%i3) solve (x^3 + x^2 - 1); sqrt(23) 25 1/3 (%t3) (--------- + --) 6 sqrt(3) 54 Solution: sqrt(3) %i 1 ---------- - - sqrt(3) %i 1 2 2 1 (%t4) x = (- ---------- - -) %t3 + -------------- - - 2 2 9 %t3 3 sqrt(3) %i 1 - ---------- - - sqrt(3) %i 1 2 2 1 (%t5) x = (---------- - -) %t3 + ---------------- - - 2 2 9 %t3 3 1 1 (%t6) x = %t3 + ----- - - 9 %t3 3 (%o6) [%t4, %t5, %t6] (%i6) breakup: false$ (%i7) solve (x^3 + x^2 - 1); Solution: sqrt(3) %i 1 ---------- - - 2 2 sqrt(23) 25 1/3 (%t7) x = --------------------- + (--------- + --) sqrt(23) 25 1/3 6 sqrt(3) 54 9 (--------- + --) 6 sqrt(3) 54 sqrt(3) %i 1 1 (- ---------- - -) - - 2 2 3 sqrt(23) 25 1/3 sqrt(3) %i 1 (%t8) x = (--------- + --) (---------- - -) 6 sqrt(3) 54 2 2 sqrt(3) %i 1 - ---------- - - 2 2 1 + --------------------- - - sqrt(23) 25 1/3 3 9 (--------- + --) 6 sqrt(3) 54 sqrt(23) 25 1/3 1 1 (%t9) x = (--------- + --) + --------------------- - - 6 sqrt(3) 54 sqrt(23) 25 1/3 3 9 (--------- + --) 6 sqrt(3) 54 (%o9) [%t7, %t8, %t9]